Front cover image for Modélisation de causalité et diagnostic des systèmes complexes de grande dimension

Modélisation de causalité et diagnostic des systèmes complexes de grande dimension

Cette thèse s'inscrit dans le cadre du projet européen PAPYRUS (7th FWP (Seventh Framework Program) et concerne le développement de modèles et d'outils permettant l'analyse d'un procédé industriel en interaction avec les indicateurs des performances du système. Ainsi que la synthèse d'algorithmes "Plug & Play" de diagnostic de défauts. Plus précisément, le premier objectif de la thèse est de proposer des modèles et des critères qui permettent, pour un procédé complexe de grande dimension, de savoir si des objectifs, exprimés en termes de performances (coût, de sûreté de fonctionnement, etc.), sont atteignables. Dans le cadre de la modélisation de causalité du système, une méthode, basée sur le transfert entropie, est proposée afin d'identifier le modèle de causalité du système à partir des données. On s'intéressera aussi à l'influence de divers défauts sur cette atteignabilité. Les outils utilisés sont principalement basés sur l'analyse par approche graphique (graphe de causalité) conjointement avec des outils statistiques. Le second objectif concerne la mise en oeuvre d'algorithmes de diagnostic de défauts. Une procédure hiérarchique de diagnostic de défauts s'appuyant sur les modèles de causalité du système est mise en oeuvre. Cette étape a aussi pour objectif de permettre l'évaluation des performances du système. La cible est le procédé d'application du projet PAPYRUS (papeterie Stora Enso d'IMATRA en Finlande)
Computer Program, French, 2013