Front cover image for Confidence Measures for Alignment and for Machine Translation

Confidence Measures for Alignment and for Machine Translation

En linguistique informatique, la relation entre langues différentes est souventétudiée via des techniques d'alignement automatique. De tels alignements peuvent êtreétablis à plusieurs niveaux structurels. En particulier, les alignements debi-textes aux niveaux phrastiques et sous-phrastiques constituent des sources importantesd'information dans pour diverses applications du Traitement Automatique du Language Naturel (TALN)moderne, la Traduction Automatique étant un exemple proéminent.Cependant, le calcul effectif des alignements de bi-textes peut êtreune tâche compliquée. Les divergences entre les langues sont multiples,de la structure de discours aux constructions morphologiques.Les alignements automatiques contiennent, majoritairement, des erreurs nuisantaux performances des applications.Dans cette situation, deux pistes de recherche émergent. La première est de continuerà améliorer les techniques d'alignement.La deuxième vise à développer des mesures de confiance fiables qui permettent aux applicationsde sélectionner les alignements selon leurs besoins.Les techniques d'alignement et l'estimation de confiance peuvent tous les deuxbénéficier d'alignements manuels.Des alignements manuels peuventjouer un rôle de supervision pour entraîner des modèles, et celuides données d'évaluation. Pourtant, la création des telles données est elle-mêmeune question importante, en particulier au niveau sous-phrastique, où les correspondancesmultilingues peuvent être implicites et difficiles à capturer.Cette thèse étudie des moyens pour acquérir des alignements de bi-textes utiles, aux niveauxphrastiques et sous-phrastiques. Le chapitre 1 fournit une description de nos motivations,la portée et l'organisation du travail, et introduit quelques repères terminologiques et lesprincipales notations.L'état-de-l'art des techniques d'alignement est revu dans la Partie I. Les chapitres 2 et3 décriventles méthodes respectivement pour l'alignement des phrases et des mots.Le chapitre 4 présente les bases de données d'alignement manuel,et discute de la création d'alignements de référence. Le reste de la thèse, la Partie II,présente nos contributions à l'alignement de bi-textes, en étudiant trois aspects.Le chapitre 5 présente notre contribution à la collection d'alignements de référence. Pourl'alignement des phrases, nous collectons les annotations d'un genre spécifiquede textes: les bi-textes littéraires. Nous proposons aussi un schéma d'annotation deconfiance. Pour l'alignement sous-phrastique,nous annotons les liens entre mots isolés avec une nouvelle catégorisation, et concevonsune approche innovante de segmentation itérative pour faciliter l'annotation des liens entre groupes de mots.Toutes les données collectées sont disponibles en ligne.L'amélioration des méthodes d'alignement reste un sujet important de la recherche. Nousprêtons une attention particulière à l'alignement phrastique, qui est souvent le point dedépart de l'alignement de bi-textes. Le chapitre 6 présente notre contribution. En commençantpar évaluer les outils d'alignement d'état-de-l'art et par analyser leurs modèles et résultats,nous proposons deux nouvelles méthodes pour l'alignement phrastique, qui obtiennent desperformances d'état-de-l'art sur un jeu de données difficile.L'autre sujet important d'étude est l'estimation de confiance. Dans le chapitre 7, nousproposons des mesures de confiance pour les alignements phrastique et sous-phrastique.Les expériences montrent que l'estimation de confiance des liens d'alignement reste undéfi remarquable. Il sera très utile de poursuivre cette étude pour renforcer les mesuresde confiance pour l'alignement de bi-textes.Enfin, notons que les contributions apportées dans cette thèse sont employées dans uneapplication réelle: le développement d'une liseuse qui vise à faciliter la lecturedes livres électroniques multilingues
Computer Program, English, 2016