skip to content
Covid-19 virus
COVID-19 Resources

Reliable information about the coronavirus (COVID-19) is available from the World Health Organization (current situation, international travel). Numerous and frequently-updated resource results are available from this WorldCat.org search. OCLC’s WebJunction has pulled together information and resources to assist library staff as they consider how to handle coronavirus issues in their communities.

Image provided by: CDC/ Alissa Eckert, MS; Dan Higgins, MAM
Abstract regular polytopes Preview this item
ClosePreview this item
Checking...

Abstract regular polytopes

Author: Peter McMullen; Egon Schulte
Publisher: Cambridge ; New York : Cambridge University Press, 2002.
Series: Encyclopedia of mathematics and its applications.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
Abstract regular polytopes stand at the end of more than two millennia of geometrical research, which began with regular polygons and polyhedra. They are highly symmetric combinatorial structures with distinctive geometric, algebraic or topological properties; in many ways more fascinating than traditional regular polytopes and tessellations. The rapid development of the subject in the past 20 years has resulted in  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
McMullen, Peter, 1942-
Abstract regular polytopes.
Cambridge ; New York : Cambridge University Press, 2002
(DLC) 2002017391
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Peter McMullen; Egon Schulte
ISBN: 0511065000 9780511065002 9780511546686 0511546688
OCLC Number: 133169118
Description: 1 online resource (xiii, 651 pages) : illustrations
Contents: Machine generated contents note: 1. Classical Regular Polytopes --
2. Regular Polytopes --
3. Coxeter Groups --
4. Amalgamation --
5. Realizations --
6. Regular Polytopes on Space-Forms --
7. Mixing --
8. Twisting --
9. Unitary Groups and Hermitian Forms --
10. Locally Toroidal 4-Polytopes: I --
11. Locally Toroidal 4-Polytopes: II --
12. Higher Toroidal Polytopes --
13. Regular Polytopes Related to Linear Groups --
14. Miscellaneous Classes of Regular Polytopes.
Series Title: Encyclopedia of mathematics and its applications.
Responsibility: Peter McMullen, Egon Schulte.

Abstract:

Abstract regular polytopes are highly symmetric combinatorial structures with distinctive geometric, algebraic or topological properties. This comprehensive up-to-date account of the subject meets a  Read more...

Reviews

Editorial reviews

Publisher Synopsis

'The book gives a comprehensive, complete overview of recent developments in a n important area of discrete geometry. it really fills an existing gap ... and it shows in an impressive manner the Read more...

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


\n\n

Primary Entity<\/h3>\n
<http:\/\/www.worldcat.org\/oclc\/133169118<\/a>> # Abstract regular polytopes<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:MediaObject<\/a>, schema:Book<\/a>, schema:CreativeWork<\/a> ;\u00A0\u00A0\u00A0\nlibrary:oclcnum<\/a> \"133169118<\/span>\" ;\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/dbpedia.org\/resource\/New_York_City<\/a>> ; # New York<\/span>\n\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/id.loc.gov\/vocabulary\/countries\/enk<\/a>> ;\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5218635090#Place\/cambridge<\/a>> ; # Cambridge<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/id.worldcat.org\/fast\/1070819<\/a>> ; # Polytopes<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5218635090#Topic\/mathematics_geometry_algebraic<\/a>> ; # MATHEMATICS--Geometry--Algebraic<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/dewey.info\/class\/516.35\/e21\/<\/a>> ;\u00A0\u00A0\u00A0\nschema:bookFormat<\/a> schema:EBook<\/a> ;\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/viaf.org\/viaf\/46990619<\/a>> ; # Egon Schulte<\/span>\n\u00A0\u00A0\u00A0\nschema:creator<\/a> <http:\/\/viaf.org\/viaf\/195290998<\/a>> ; # Peter McMullen<\/span>\n\u00A0\u00A0\u00A0\nschema:datePublished<\/a> \"2002<\/span>\" ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"Abstract regular polytopes stand at the end of more than two millennia of geometrical research, which began with regular polygons and polyhedra. They are highly symmetric combinatorial structures with distinctive geometric, algebraic or topological properties; in many ways more fascinating than traditional regular polytopes and tessellations. The rapid development of the subject in the past 20 years has resulted in a rich new theory, featuring an attractive interplay of mathematical areas, including geometry, combinatorics, group theory and topology. Abstract regular polytopes and their groups provide an appealing new approach to understanding geometric and combinatorial symmetry. This is the first comprehensive up-to-date account of the subject and its ramifications, and meets a critical need for such a text, because no book has been published in this area of classical and modern discrete geometry since Coxeter\'s Regular Polytopes (1948) and Regular Complex Polytopes (1974). The book should be of interest to researchers and graduate students in discrete geometry, combinatorics and group theory.<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:exampleOfWork<\/a> <http:\/\/worldcat.org\/entity\/work\/id\/5218635090<\/a>> ;\u00A0\u00A0\u00A0\nschema:genre<\/a> \"Electronic books<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:inLanguage<\/a> \"en<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isPartOf<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5218635090#Series\/encyclopedia_of_mathematics_and_its_applications<\/a>> ; # Encyclopedia of mathematics and its applications.<\/span>\n\u00A0\u00A0\u00A0\nschema:isSimilarTo<\/a> <http:\/\/worldcat.org\/entity\/work\/data\/5218635090#CreativeWork\/abstract_regular_polytopes<\/a>> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Abstract regular polytopes<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:productID<\/a> \"133169118<\/span>\" ;\u00A0\u00A0\u00A0\nschema:publication<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/133169118#PublicationEvent\/cambridge_new_york_cambridge_university_press_2002<\/a>> ;\u00A0\u00A0\u00A0\nschema:publisher<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5218635090#Agent\/cambridge_university_press<\/a>> ; # Cambridge University Press<\/span>\n\u00A0\u00A0\u00A0\nschema:url<\/a> <https:\/\/openlibrary.org\/books\/OL7755544M<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/public.ebookcentral.proquest.com\/choice\/publicfullrecord.aspx?p=218008<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <https:\/\/doi.org\/10.1017\/CBO9780511546686<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/www.myilibrary.com?id=41990<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <https:\/\/search.ebscohost.com\/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=120688<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/ebookcentral.proquest.com\/lib\/ucreative-ebooks\/detail.action?docID=218008<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/www.myilibrary.com?id=41990&ref=toc<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <https:\/\/archive.org\/details\/abstractregularp0000mcmu<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/www.dawsonera.com\/depp\/reader\/protected\/external\/AbstractView\/S9780511308437<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/www.vlebooks.com\/vleweb\/product\/openreader?id=none&isbn=9781316085752<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/site.ebrary.com\/id\/10070348<\/a>> ;\u00A0\u00A0\u00A0\nschema:workExample<\/a> <http:\/\/worldcat.org\/isbn\/9780511065002<\/a>> ;\u00A0\u00A0\u00A0\nschema:workExample<\/a> <http:\/\/worldcat.org\/isbn\/9780511546686<\/a>> ;\u00A0\u00A0\u00A0\nwdrs:describedby<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/133169118<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Related Entities<\/h3>\n
<http:\/\/dbpedia.org\/resource\/New_York_City<\/a>> # New York<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"New York<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/dewey.info\/class\/516.35\/e21\/<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/ebookcentral.proquest.com\/lib\/ucreative-ebooks\/detail.action?docID=218008<\/a>>\u00A0\u00A0\u00A0\nrdfs:comment<\/a> \"Connect to Ebook.<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5218635090#Agent\/cambridge_university_press<\/a>> # Cambridge University Press<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:Agent<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Cambridge University Press<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5218635090#Place\/cambridge<\/a>> # Cambridge<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Cambridge<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5218635090#Series\/encyclopedia_of_mathematics_and_its_applications<\/a>> # Encyclopedia of mathematics and its applications.<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:PublicationSeries<\/a> ;\u00A0\u00A0\u00A0\nschema:hasPart<\/a> <http:\/\/www.worldcat.org\/oclc\/133169118<\/a>> ; # Abstract regular polytopes<\/span>\n\u00A0\u00A0\u00A0\nschema:name<\/a> \"Encyclopedia of mathematics and its applications.<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Encyclopedia of mathematics and its applications<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5218635090#Topic\/mathematics_geometry_algebraic<\/a>> # MATHEMATICS--Geometry--Algebraic<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"MATHEMATICS--Geometry--Algebraic<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.loc.gov\/vocabulary\/countries\/enk<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\ndcterms:identifier<\/a> \"enk<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.worldcat.org\/fast\/1070819<\/a>> # Polytopes<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Polytopes<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/viaf.org\/viaf\/195290998<\/a>> # Peter McMullen<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:birthDate<\/a> \"1942<\/span>\" ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"McMullen<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Peter<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Peter McMullen<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/viaf.org\/viaf\/46990619<\/a>> # Egon Schulte<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:birthDate<\/a> \"1955<\/span>\" ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Schulte<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Egon<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Egon Schulte<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/entity\/work\/data\/5218635090#CreativeWork\/abstract_regular_polytopes<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:CreativeWork<\/a> ;\u00A0\u00A0\u00A0\nrdfs:label<\/a> \"Abstract regular polytopes.<\/span>\" ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"Print version:<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isSimilarTo<\/a> <http:\/\/www.worldcat.org\/oclc\/133169118<\/a>> ; # Abstract regular polytopes<\/span>\n\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/isbn\/9780511065002<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:ProductModel<\/a> ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"0511065000<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"9780511065002<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/isbn\/9780511546686<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:ProductModel<\/a> ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"0511546688<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"9780511546686<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/title\/-\/oclc\/133169118<\/a>>\u00A0\u00A0\u00A0\u00A0a \ngenont:InformationResource<\/a>, genont:ContentTypeGenericResource<\/a> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/www.worldcat.org\/oclc\/133169118<\/a>> ; # Abstract regular polytopes<\/span>\n\u00A0\u00A0\u00A0\nschema:dateModified<\/a> \"2020-05-11<\/span>\" ;\u00A0\u00A0\u00A0\nvoid:inDataset<\/a> <http:\/\/purl.oclc.org\/dataset\/WorldCat<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/title\/-\/oclc\/133169118#PublicationEvent\/cambridge_new_york_cambridge_university_press_2002<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:PublicationEvent<\/a> ;\u00A0\u00A0\u00A0\nschema:location<\/a> <http:\/\/dbpedia.org\/resource\/New_York_City<\/a>> ; # New York<\/span>\n\u00A0\u00A0\u00A0\nschema:location<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5218635090#Place\/cambridge<\/a>> ; # Cambridge<\/span>\n\u00A0\u00A0\u00A0\nschema:organizer<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5218635090#Agent\/cambridge_university_press<\/a>> ; # Cambridge University Press<\/span>\n\u00A0\u00A0\u00A0\nschema:startDate<\/a> \"2002<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n