skip to content
Advanced topological insulators Preview this item
ClosePreview this item

Advanced topological insulators

Author: Huixia Luo
Publisher: Hoboken, NJ : John Wiley & Sons, Inc. ; Beverly, MA : Scrivener Publishing, LLC, [2019]
Edition/Format:   eBook : Document : EnglishView all editions and formats

based on 1 rating(s) 1 with a review

More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...


Genre/Form: Electronic books
Additional Physical Format: Print version:
Advanced topological insulators.
Hoboken, New Jersey : Wiley-Scrivener, [2019]
(DLC) 2019007042
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Huixia Luo
ISBN: 111940732X 9781119407331 1119407338 9781119407324 9781119407317 1119407311
OCLC Number: 1088657792
Description: 1 online resource
Contents: Preface xv1 Characterization of Phase Transition Points for Topological Gapped Systems 1Linhu Li and Shu Chen1.1 Introduction 21.2 General Definition of Topological Invariant of Phase Transition Points 31.2.1 A 1D Example: the Su-Schrieffer-Heeger Model 31.2.2 General Characterization of Topological Phase Transition 71.3 Phase Transition Points of One-Dimensional Systems 91.3.1 Z -Type Topological Gapped Systems Class BDI: An Extended Version of the SSH Model Class AIII: The Creutz Model 161.3.2 Z2 Topological Gapped Systems Class D: An Extended Version of the Kiteav Model Class DIII: An Example Model 231.3.3 A Non-Topological Example of 1D Insulating Systems 261.4 Phase Transition Points of Two-Dimensional Systems 261.4.1 The Haldane Model 281.4.2 An Extended Version of the Qi-Wu-Zhang Model 331.5 An Example of 3D Topological Insulators 36References 412 Topological Insulator Materials for Advanced Optoelectronic Devices 45Zengji Yue, Xiaolin Wang and Min Gu2.1 Excellent Electronic Properties 462.1.1 Quantum Spin Hall Effect 462.1.2 Topological Magnetoelectric Effects 472.1.3 Magnetic Monopole Image 472.1.4 Topological Superconductors 482.1.5 Quantum Anomalous Hall Effects 492.1.6 Giant Magnetoresistance Effects 492.1.7 Shubnikov-De Haas Effects 502.2 Excellent Optical Properties 502.2.1 Ultrahigh Bulk Refractive Index 502.2.2 Near-Infrared Transparency 522.2.3 Faraday Rotation and Unusual Electromagnetic Scattering 532.2.4 Ultra-Broadband Plasmon Excitations 542.2.5 Polarized Light Induced Photocurrent 562.2.6 Broadband Optical Nonlinear Response 562.3 Advanced Optoelectronic Devices 572.3.1 Plasmonic Solar Cells 572.3.2 Nanometric Holograms 572.3.3 Ultrathin Flat Lens 592.3.4 Near-Infrared Photodetector 592.3.5 Saturable Absorber 602.4 Conclusion and Outlook 62References 633 Topological Insulator Thin Films and Artificial Topological Superconductors 71Hao Zheng, Yaoyi Li and Jin-Feng Jia3.1 Theoretical Background 723.1.1 Berry Phase and Topology in Condensed Matter Physics 723.1.2 Topological Insulator 733.1.3 Topological Superconductor and Majorana Fermionic Mode 753.2 Introduction of the Experimental Methods 783.2.1 Molecular Beam Epitaxy 783.2.2 Scanning Tunneling Microscopy 803.3 Topological Insulator Thin Films 823.4 Artificial Two-Dimensional Topological Superconductor 883.5 Discovery of Majorana Zero Mode 943.5.1 Identification of a Majorana Zero Mode Base on Its Lateral Extension 953.5.2 Identification of a Majorana Zero Mode Based on Its Spin 993.6 Summary 102References 1034 Topological Matter in the Absence of Translational Invariance 109Koji Kobayashi, Tomi Ohtsuki and Ken-Ichiro Imura4.1 Introduction 1094.2 Topological Insulator and Real-Space Topology 1144.2.1 Cylindrical Topological Insulator 1154.2.2 Spherical Topological Insulator 1154.2.3 Protection of the Surface States: Berry Phase Point of View 1184.3 Layer Construction: Dimensional Crossovers of Topological Properties 1194.3.1 Time-Reversal Invariant (Z2) Type Lattice Model: STI/WTI 1194.3.2 Time-Reversal Broken (Z) Type Lattice Model: WSM/CI 1204.3.3 Similarity Between Two Phase Diagrams 1214.3.4 Stacked QSH/QAH Model 1224.3.5 Dimensional Crossover 1244.3.6 Topological Insulator Terraces and 1D Perfectly Conducting Helical Channel 1254.4 Effects of Disorder 1264.4.1 Model for Disordered STI/WTI 1274.4.2 Phase Diagram of Disordered Topological Insulators 1274.4.2.1 Phase Diagram: Isotropic Case 1274.4.2.2 Phase Diagram: Anisotropic Case 1304.5 Critical Properties of Topological Quantum Phase Transitions 1304.5.1 Quantum Phase Transition in Random Systems 1304.5.2 Critical Properties of Topological Insulator-Metal Transition 1324.5.3 Topological Semimetal-Metal Transition: Evolution of Density of States 1334.5.4 Effect of Disorder on Weyl/Dirac Semimetals 1344.5.5 Density of State Scaling 1344.5.6 Numerical Verification of Density of State Scaling 1364.5.7 Relationships Derived from the Density of States Scaling 1364.5.7.1 Conductivity 1364.5.7.2 Specific Heat and Susceptibility 1394.5.8 Future Problem for Semimetal-Metal Transition 1404.6 Phase Diagrams Obtained from Machine Learning 1424.6.1 Phase Diagram for Disordered Topological Insulators 1444.6.2 Phase Diagram for Disordered Weyl Semimetal 1464.6.3 Comparison of CNN Method and the Conventional Method 1484.7 Summary and Concluding Remarks 149References 1495 Changing the Topology of Electronic Systems Through Interactions or Disorder 159M.A.N. Araujo, E.V. Castro and P.D. Sacramento5.1 Introduction 1605.2 Change of an Insulator's Topological Properties by a Hubbard Interaction 1635.2.1 A Model for Spinless Fermions with Z Topological Number 1635.2.2 A Spinful Model with Z Topological Number 1695.2.3 Model with Z2 Topological Number 1705.3 Effects of Disorder on Chern Insulators 1725.3.1 Model and Methods 1745.3.2 Disorder Equally Distributed in Both Sublattices 1765.3.3 Disorder Selectively Distributed in Only One Sublattice and Anomalous Hall Metal 1795.3.4 Wrapping Up the Effect of Disorder 1825.4 Topological Superconductors 1835.4.1 Magnetic Adatom Chains on a S-Wave Superconductor: Topological Modes and Quantum Phase Transitions 1835.4.1.1 Model: S-Wave Superconductor with Magnetic Impurities 1845.4.1.2 Energy Levels and Topological Invariant 1855.4.1.3 Wave Functions: Cross-Over from YSR States to MZEM 1865.4.2 Triplet Two-Dimensional Superconductor with Magnetic Chains 1875.4.2.1 Pure Triplet Superconductor 1875.4.2.2 Addition of Magnetic Impurities 1885.4.3 Chern Number Analysis When Translational Invariance Is Broken 1895.4.4 Magnetic Islands on a P-Wave Superconductor 1905.5 Conclusions 1915.6 Acknowledgements 195References 1966 Q-Switching Pulses Generation Using Topology Insulators as Saturable Absorber 207Sulaiman Wadi Harun, Nurfarhanah Zulkipli, Ahmad Razif Muhammad and Anas Abdul Latiff6.1 Introduction 2086.2 Fiber Laser Technology 2096.2.1 Working Principle of Erbium-Doped Fiber Laser (EDFL) 2116.2.2 Q-Switching 2126.3 Topology Insulator (TI) 2156.4 Pulsed Laser Parameters 2166.5 Bi2 Se3 Material as Saturable Absorber in Passively Q-Switched Fiber Laser 2186.5.1 Preparation and Optical Characterization of Bi2 Se3 Based SA 2196.5.2 Configuration of the Q-Switched Laser with Bi2 Se3 Based SA 2216.5.3 Q-Switching Performances 2226.6 Q-Switched EDFL with Bi2 Te3 Material as Saturable Absorber 2266.6.1 Preparation and Optical Characterization of the SA 2266.6.2 Experimental Setup 2286.6.3 Q-Switched Laser Performances 2296.7 Conclusion 233References 2347 Topological Phase Transitions: Criticality, Universality, and Renormalization Group Approach 239Wei Chen and Manfred Sigrist7.1 Generic Features Near Topological Phase Transitions 2407.1.1 Topological Phase Transition in Lattice Models 2407.1.2 Gap-Closing and Reopening 2427.1.3 Divergence of the Curvature Function 2437.1.4 Renormalization Group Approach 2457.2 Topological Invariant in 1D Calculated from Berry Connection 2497.2.1 Berry Connection and Theory of Charge Polarization 2497.2.2 Su-Schrieffer-Heeger Model 2517.2.3 Kitaev's P-Wave Superconducting Chain 2567.3 Topological Invariant in 2D Calculated from Berry Curvature 2617.3.1 Berry Curvature and Theory of Orbital Magnetization 2617.4 Universality Class of Higher Order Dirac Model 2627.5 Topological Invariant in D-Dimension Calculated from Pfaffian 2687.5.1 Pfaffian of the m-Matrix 2687.5.2 Bernevig-Hughes-Zhang Model 2727.6 Summary 277References 2778 Behaviour of Dielectric Materials Under Electron Irradiation in a SEM 281Slim Fakhfakh, Khaled Raouadi and Omar Jbara8.1 Introduction 2828.2 Fundamental Aspects of Electron Irradiation of Solids 2838.2.1 Volume of Interaction and Penetration Depth 2838.2.2 Emissions and Spatial Resolutions Resulting from Electron Irradiation 2848.3 Electron Emission of Solid Materials 2858.3.1 Spectrum or Energy Distribution of the Electron Emission 2858.3.2 Backscattered Electron Emission 2868.3.3 Secondary Electron Emission 2898.3.3.1 Mechanism of Secondary Electron Emission 2898.3.3.2 Variation of the Electron Emission Rate as a Function of Primary Energy 2928.3.4 Auger Electron Emission 2938.3.5 Total Emission Yield 2948.4 Electron Emission of Solid Materials 2958.5 Trapping and Charge Transport in Insulators 2968.5.1 Generalities 2968.5.2 Defects and Impurities 2978.5.3 Amorphous or Very Disordered Insulators: Disorder and Localized States in the Conduction Band 2988.5.4 Injection, Localization and Transport of Charges 2998.5.5 Space Charge 2998.6 Application: Dynamic Trapping Properties of Dielectric Materials Under Electron Irradiation 3008.6.1 Measurement of the Trapped Charge from Displacement Current and Conservation Law of the Current 3018.6.1.1 Measurement of the Trapped Charge from the Displacement Current 3018.6.1.2 Conservation Law of the Current and the Induced Charge 3038.6.2 Device and Experimental Procedure 3058.6.3 Typical Curves of Measured Currents and Influence Factor 3078.6.4 Trapped Charge 3098.6.4.1 Characteristic Parameters of the Charging Process 3118.6.4.2 Characteristic Parameters of Discharging Process 3118.6.5 Determination of the Total Electron Emission Yield 3148.6.6 Flashover Phenomena and Determination of the Trapping Cross Section for Electrons 3158.6.7 Determination of Effective Resistivity and Estimation of the Electric Field Strength Initiating Surface Discharge 3198.6.8 Effect of Current Density 3228.7 Conclusion 325References 3269 Photonic Crystal Fiber (PCF) is a New Paradigm for Realization of Topological Insulator 331Gopinath Palai9.1 Introduction 3319.1.1 Electrical Topological Insulator 3329.1.1.1 Hall Effect 3329.1.2 Photonic Crystal Fiber 3419.1.2.1 Solid-Core PCFs 3439.1.2.2 Hollow-Core PCFs 3449.1.3 Photonic Topological Insulator 3459.2 Structure of Photonic Crystal Fiber 3469.3 Result and Discussion 3479.4 Conclusion 353References 35310 Patterned 2D Thin Films Topological Insulators for Potential Plasmonic Applications 361G. Padmalaya, E. Manikandan, S. Radha, B.S. Sreeja and P. Senthil Kumar10.1 Introduction 36210.2 Fundamentals of Plasmons 36310.2.1 Plasmons at Metals/Insulator Interfaces 36310.2.1.1 Properties of Surface Plasmons 36310.2.2 Plasmons-Based on Electromagnetic Fields 36410.2.3 Plasmons at Planar Interfaces 36610.2.3.1 Behaviors of Plasmons at Planar Surfaces 36610.2.4 Plasmons at Surface Imaging 36610.3 Plasmons at Structured Surfaces 37010.3.1 Graphene-Based Structure 37010.3.2 Metal Oxide-Based Structure 37110.3.3 Dimensional Thin Films-Based Topological Insulators 37110.3.3.1 Graphene-Based Topological Insulators 37210.3.3.2 Graphene in Spintronics Applications 37210.3.3.3 Graphene in Memory-Based Applications 37310.3.3.4 Graphene-Based Topological Insulator for Thermoelectric Applications 37410.3.3.5 Graphene in Sensing Applications Based Topological Line Defects 37510.3.4 Piezotronics-Based Topological Insulators 37710.3.4.1 Fundamental Physics of Piezotronics and Its Applications 37710.3.5 Metamaterials-Based Topological Insulators 37910.3.5.1 Operation Principle 37910.3.5.2 Mapping of MM with TI 38010.4 Nanostructured Thin Films and Its Applications 38710.4.1 Plasmonic Applications 38710.4.2 Biomedical Applications 38710.5 Summary 388References 389Index 393
Responsibility: edited by Huixia Luo.


User-contributed reviews

WorldCat User Reviews (1)

Getting high of helium... LITERALLY! ??????

by Moxox (WorldCat user published 2019-07-03) Very Good Permalink

As much as I hated the Dorne storyline in the show, I really loved this scene. With Cersei talking about Oberyn's death, it just reminded us why Ellaria did what she did...  To hurt Cersei.\n\nI actually felt bad for her and Tyene in this scene, which I didn't think was possible......
Read more... 

  • Was this review helpful to you?
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...


Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data

Primary Entity

<> # Advanced topological insulators
    a schema:CreativeWork, schema:MediaObject, schema:Book ;
    library:oclcnum "1088657792" ;
    library:placeOfPublication <> ;
    schema:about <> ; # Solid state physics
    schema:about <> ; # Dielectrics
    schema:about <> ; # TECHNOLOGY & ENGINEERING--Mechanical
    schema:about <> ; # Electronic apparatus and appliances--Materials
    schema:about <> ;
    schema:about <> ; # Superconductors
    schema:about <> ; # Topological insulators
    schema:bookFormat schema:EBook ;
    schema:datePublished "2019" ;
    schema:editor <> ; # Huixia Luo
    schema:exampleOfWork <> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isSimilarTo <> ;
    schema:name "Advanced topological insulators"@en ;
    schema:productID "1088657792" ;
    schema:url <> ;
    schema:url <> ;
    schema:workExample <> ;
    schema:workExample <> ;
    schema:workExample <> ;
    wdrs:describedby <> ;

Related Entities

<> # Huixia Luo
    a schema:Person ;
    schema:familyName "Luo" ;
    schema:givenName "Huixia" ;
    schema:name "Huixia Luo" ;

<> # Electronic apparatus and appliances--Materials
    a schema:Intangible ;
    schema:name "Electronic apparatus and appliances--Materials"@en ;

<> # Solid state physics
    a schema:Intangible ;
    schema:name "Solid state physics"@en ;

    a schema:Intangible ;
    schema:name "TECHNOLOGY & ENGINEERING--Mechanical"@en ;

<> # Topological insulators
    a schema:Intangible ;
    schema:name "Topological insulators"@en ;

    a schema:CreativeWork ;
    rdfs:label "Advanced topological insulators." ;
    schema:description "Print version:" ;
    schema:isSimilarTo <> ; # Advanced topological insulators

    a schema:ProductModel ;
    schema:isbn "1119407311" ;
    schema:isbn "9781119407317" ;

    a schema:ProductModel ;
    schema:isbn "111940732X" ;
    schema:isbn "9781119407324" ;

    a schema:ProductModel ;
    schema:isbn "1119407338" ;
    schema:isbn "9781119407331" ;

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.