skip to content
Aerodynamics for engineers Preview this item
ClosePreview this item

Aerodynamics for engineers

Author: John J Bertin; Russell M Cummings
Publisher: Upper Saddle River, N.J. : Pearson/Prentice Hall, ©2009.
Edition/Format:   Print book : English : 5th edView all editions and formats

(not yet rated) 0 with reviews - Be the first.

More like this

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...


Document Type: Book
All Authors / Contributors: John J Bertin; Russell M Cummings
ISBN: 9780132272681 0132272687
OCLC Number: 377826470
Notes: Édition précédente: 2002.
Description: xx, 732 p. : ill. ; 24 cm
Contents: (NOTE: Each section contains a Summary, Problems, and References) 1. Fluid Properties. Concept of a Fluid. Fluid as a Continuum. Fluid Properties. Pressure Variation in a Static Fluid Medium. The Standard Atmosphere. 2. Fundamentals of Fluid Mechanics. Introduction to Fluid Dynamics. Conservation of Mass. Conservation of Linear Momentum. Applications to Constant-Property Flows. Reynolds Number and Mach Number as Similarity Parameters. Concept of the Boundary Layer. Conservation of Energy. First Law of Thermodynamics. Derivation of the Energy Equation. 3. Dynamics of an Incompressible, Inviscid Flow Field. Inviscid Flows. Bernoulli's Equation. Use of Bernoulli's Equation to Determine Airspeed. The Pressure Coefficient. Circulation. Irrotational Flow. Kelvin's Theorem. Incompressible, Irrotational Flow. Stream Function in a Two-Dimensional, Incompressible Flow. Relation Between Streamlines and Equipotential Lines. Superposition of Flows. Elementary Flows. Adding Elementary Flows to Describe Flow Around a Cylinder. Lift and Drag Coefficients as Dimensionless Flow-Field Parameters. Flow Around a Cylinder with Circulation. Source Density Distribution on the Body Surface. Incompressible, Axisymmetric Flow. 4. Viscous Boundary Layers. Equations Governing the Boundary Layer for a Steady, Two-Dimensional, Incompressible Flow. Boundary Conditions. Incompressible, Laminar Boundary Layer. Boundary-Layer Transition. Incompressible, Turbulent Boundary Layer. Eddy Viscosity and Mixing Length Concepts. Integral Equations for a Flat-Plate Boundary Layer. Thermal Boundary Layer for Constant-Property Flows. 5. Characteristic Parameters for Airfoil and Wing Aerodynamics. Characterization of Aerodynamic Forces and Moments. Airfoil Geometry Parameters. Wing-Geometry Parameters. Aerodynamic Force and Moment Coefficients. Wings of Finite Span. 6. Incompressible Flows around Airfoils of Infinite Span. General Comments. Circulation and the Generation of Lift. General Thin-Airfoil Theory. Thin, Flat-Plate Airfoil (Symmetric Airfoil). Thin, Cambered Airfoil. High-Lift Airfoil Sections. Multielement Airfoil Sections for Generating High Lift. High-Lift Military Airfoils. 7. Incompressible Flows about Wings of Finite Span. General Comments. Vortex System. Lifting-Line Theory for Unswept Wings. Panel Methods. Vortex Lattice Method. Factors Affecting Drag Due-to-Lift at Subsonic Speeds. Delta Wings. Leading-Edge Extensions. Asymmetric Loads on the Fuselage at High Angles of Attack. Flow Fields for Aircraft at High Angles of Attack. 8. Dynamics of a Compressible Flow Field. Thermodynamic Concepts. Adiabatic Flow in a Variable-Area Streamtube. Isentropic Flow in a Variable-Area. Characteristic Equations and Prandtl-Meyer Flow. Shock Waves. Viscous Boundary Layer. 9. Compressible, Subsonic Flows and Transonic Flows. Compressible, Subsonic Flow. Transonic Flow Past Unswept Airfoils. Swept Wings at Transonic Speeds. Forward Swept Wing. Transonic Aircraft.10. Two-Dimensional Supersonic Flows around Thin Airfoil. Linear Theory. Second-Order Theory (Busemann's Theory). Shock-Expansion Technique.11. Supersonic Flows Over Wings and Airplane Configurations. General Remarks About Lift and Drag. General Remarks About Supersonic Wings. Governing Equation and Boundary Conditions. Consequences of Linearity. Solution Methods. Conical-Flow Method. Singularity-Distribution Method. Design Considerations for Supersonic Aircraft. Some Comments About the Design of the SST and of the HSCT. Aerodynamic Interaction. Aerodynamic Analysis for Complete Configurations in a Supersonic Stream.12. Hypersonic Flows. Newtonian Flow Model. Stagnation Region Flow-Field Properties. Modified Newtonian Flow. High L/D Hypersonic Configurations-Waveriders. Aerodynamic Heating. A Hypersonic Cruiser for the Twenty-First Century? Importance of Interrelating CFD, Ground-Test Data, and Flight-Test Data.13. Aerodynamic Design Considerations. High-Lift Configurations. Circulation Control Wing. Design Considerations for Tactical Military Aircraft. Drag Reduction. Development of an Airframe Modification to Improve the Mission Effectiveness of an Existing Airplane. Considerations for Wing/Canard, Wing/Tail, and Tailless Configurations. Comments on the F-15 Design. The Design of the F-22.14. Tools for Defining the Aerodynamic Environment. CFD Tools. Establishing the Credibility of CFD Simulations. Ground-Based Test Programs. Flight-Test Programs. Integration of Experimental and Computational Tools: The Aerodynamic Design Philosophy.Appendix A: The Equations of Motion Written in Conservation Form. Appendix B: A Collection of Often Used Tables. Index
Responsibility: John J. Bertin and Russell M. Cummings.


User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...


Be the first.

Similar Items

Related Subjects:(2)

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data

Primary Entity

<> # Aerodynamics for engineers
    a schema:CreativeWork, schema:Book ;
   library:oclcnum "377826470" ;
   library:placeOfPublication <> ;
   library:placeOfPublication <> ; # Upper Saddle River, N.J.
   schema:about <> ;
   schema:about <> ; # Aerodynamics
   schema:about <> ; # Aérodynamique
   schema:bookEdition "5th ed." ;
   schema:bookFormat bgn:PrintBook ;
   schema:contributor <> ; # Russell Mark Cummings
   schema:copyrightYear "2009" ;
   schema:creator <> ; # John J. Bertin
   schema:datePublished "2009" ;
   schema:exampleOfWork <> ;
   schema:inLanguage "en" ;
   schema:name "Aerodynamics for engineers" ;
   schema:numberOfPages "732" ;
   schema:productID "377826470" ;
   schema:publication <> ;
   schema:publisher <> ; # Pearson/Prentice Hall
   schema:workExample <> ;
   umbel:isLike <> ;
   wdrs:describedby <> ;

Related Entities

<> # Pearson/Prentice Hall
    a bgn:Agent ;
   schema:name "Pearson/Prentice Hall" ;

<> # Upper Saddle River, N.J.
    a schema:Place ;
   schema:name "Upper Saddle River, N.J." ;

<> # Aerodynamics
    a schema:Intangible ;
   schema:name "Aerodynamics" ;

<> # John J. Bertin
    a schema:Person ;
   schema:birthDate "1938" ;
   schema:familyName "Bertin" ;
   schema:givenName "John J." ;
   schema:name "John J. Bertin" ;

<> # Russell Mark Cummings
    a schema:Person ;
   schema:familyName "Cummings" ;
   schema:givenName "Russell Mark" ;
   schema:givenName "Russell M." ;
   schema:name "Russell Mark Cummings" ;

    a schema:ProductModel ;
   schema:isbn "0132272687" ;
   schema:isbn "9780132272681" ;

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.