skip to content
Covid-19 virus
COVID-19 Resources

Reliable information about the coronavirus (COVID-19) is available from the World Health Organization (current situation, international travel). Numerous and frequently-updated resource results are available from this WorldCat.org search. OCLC’s WebJunction has pulled together information and resources to assist library staff as they consider how to handle coronavirus issues in their communities.

Image provided by: CDC/ Alissa Eckert, MS; Dan Higgins, MAM
Algebraic theory of locally nilpotent derivations Preview this item
ClosePreview this item
Checking...

Algebraic theory of locally nilpotent derivations

Author: Gene Freudenburg
Publisher: [Place of publication not identified] : Springer, 2017.
Series: Encyclopaedia of mathematical sciences, v. 136.; Encyclopaedia of mathematical sciences., Invariant theory and algebraic transformation groups ;, 7.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
Invariant Theory and Algebraic Transformation Groups VII.
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Freudenburg, Gene.
Algebraic theory of locally nilpotent derivations.
[Place of publication not identified] : Springer, 2017
(OCoLC)988283787
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Gene Freudenburg
ISBN: 9783662553503 3662553503
OCLC Number: 1003701846
Description: 1 online resource
Contents: Acknowledgments; Introduction; Historical Overview; Notes on the Second Edition; Contents; 1 First Principles; 1.1 Preliminaries; 1.1.1 Rings and Modules; 1.1.2 Fields; 1.1.3 Localizations; 1.1.4 Degree Functions; 1.1.5 Graded Rings and Homogeneous Derivations; 1.1.6 Associated Graded Rings; 1.1.7 Locally Finite and Locally Nilpotent Derivations; 1.1.8 Degree Function Induced by a Derivation; 1.1.9 Exponential and Dixmier Maps; 1.1.10 Derivative of a Polynomial; 1.2 Basic Facts About Derivations; 1.2.1 Algebraic Operations; 1.2.2 Subalgebra Nil(D); 1.2.3 Kernels; 1.2.4 Localization 1.2.5 Integral Ideals1.2.6 Extension of Scalars; 1.2.7 Integral Extensions and Conductor Ideals; 1.3 Varieties and Group Actions; 1.4 First Principles for Locally Nilpotent Derivations; 1.5 Ga-Actions; 1.5.1 Correspondence with LNDs; 1.5.2 Orbits, Vector Fields and Fixed Points; 1.6 Degree Resolution and Canonical Factorization; 1.6.1 Degree Modules; 1.6.2 Degree Resolutions; 1.6.3 Equivariant Affine Modifications; 1.6.4 Canonical Factorizations; 2 Further Properties of LNDs; 2.1 Irreducible Derivations; 2.2 Minimal Local Slices; 2.3 Four Lemmas About UFDs; 2.4 Degree of a Derivation 2.5 Makar-Limanov Invariant2.6 Quasi-Extensions and Zn-Gradings; 2.7 G-Critical Elements; 2.8 AB and ABC Theorems; 2.9 Cables and Cable Algebras; 2.9.1 Associated Rooted Tree; 2.9.2 D-Cables; 2.9.3 Cable Algebras; 2.10 Exponential Automorphisms; 2.11 Transvectants and Wronskians; 2.11.1 Transvectants; 2.11.2 Wronskians; 2.12 Recognizing Polynomial Rings; 3 Polynomial Rings; 3.1 Variables, Automorphisms, and Gradings; 3.1.1 Linear Maps and Derivations; 3.1.2 Triangular and Tame Automorphisms; 3.2 Derivations of Polynomial Rings; 3.2.1 Definitions; 3.2.2 Partial Derivatives 3.2.3 Jacobian Derivations3.2.4 Homogenizing a Derivation; 3.2.5 Other Base Rings; 3.3 Locally Nilpotent Derivations of Polynomial Rings; 3.4 Slices in Polynomial Rings; 3.5 Triangular Derivations and Automorphisms; 3.6 Group Actions on An; 3.6.1 Terminology; 3.6.2 Translations; 3.6.3 Planar Actions; 3.6.4 Theorem of Deveney and Finston; 3.6.5 Proper and Locally Trivial Ga-Actions; 3.7 Ga-Actions Relative to Other Group Actions; 3.8 Some Important Early Examples; 3.8.1 Bass's Example ([12], 1984); 3.8.2 Popov's Examples ([344], 1987); 3.8.3 Smith's Example ([386], 1989) 3.8.4 Winkelmann's Example 1 ([421], 1990)3.8.5 Winkelmann's Example 2 ([421], 1990); 3.8.6 Example of Deveney and Finston ([104], 1995); 3.9 Homogeneous Dependence Problem; 3.9.1 Construction of Examples; 3.9.2 Derksen's Example; 3.9.3 De Bondt's Examples; 3.9.4 Rank-4 Example in Dimension 5; 4 Dimension Two; 4.1 Background; 4.2 Newton Polygons; 4.3 Polynomial Ring in Two Variables Over a Field; 4.3.1 Rentschler's Theorem: First Proof; 4.3.2 Rentschler's Theorem: Second Proof; 4.3.3 Proof of Jung's Theorem; 4.3.4 Proof of Structure Theorem
Series Title: Encyclopaedia of mathematical sciences, v. 136.; Encyclopaedia of mathematical sciences., Invariant theory and algebraic transformation groups ;, 7.
Responsibility: Gene Freudenburg.

Abstract:

Invariant Theory and Algebraic Transformation Groups VII  Read more...

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


\n\n

Primary Entity<\/h3>\n
<http:\/\/www.worldcat.org\/oclc\/1003701846<\/a>> # Algebraic theory of locally nilpotent derivations<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:MediaObject<\/a>, schema:Book<\/a>, schema:CreativeWork<\/a> ;\u00A0\u00A0\u00A0\nlibrary:oclcnum<\/a> \"1003701846<\/span>\" ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/dewey.info\/class\/516.35\/e23\/<\/a>> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/58635649#Topic\/commutative_algebra<\/a>> ; # Commutative algebra<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/58635649#Topic\/geometry_algebraic<\/a>> ; # Geometry, Algebraic<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/58635649#Topic\/mathematics_geometry_general<\/a>> ; # MATHEMATICS--Geometry--General<\/span>\n\u00A0\u00A0\u00A0\nschema:author<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/58635649#Person\/freudenburg_gene<\/a>> ; # Gene Freudenburg<\/span>\n\u00A0\u00A0\u00A0\nschema:bookFormat<\/a> schema:EBook<\/a> ;\u00A0\u00A0\u00A0\nschema:datePublished<\/a> \"2017<\/span>\" ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"Acknowledgments; Introduction; Historical Overview; Notes on the Second Edition; Contents; 1 First Principles; 1.1 Preliminaries; 1.1.1 Rings and Modules; 1.1.2 Fields; 1.1.3 Localizations; 1.1.4 Degree Functions; 1.1.5 Graded Rings and Homogeneous Derivations; 1.1.6 Associated Graded Rings; 1.1.7 Locally Finite and Locally Nilpotent Derivations; 1.1.8 Degree Function Induced by a Derivation; 1.1.9 Exponential and Dixmier Maps; 1.1.10 Derivative of a Polynomial; 1.2 Basic Facts About Derivations; 1.2.1 Algebraic Operations; 1.2.2 Subalgebra Nil(D); 1.2.3 Kernels; 1.2.4 Localization<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"Invariant Theory and Algebraic Transformation Groups VII.<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:exampleOfWork<\/a> <http:\/\/worldcat.org\/entity\/work\/id\/58635649<\/a>> ;\u00A0\u00A0\u00A0\nschema:genre<\/a> \"Electronic books<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:inLanguage<\/a> \"en<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isPartOf<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/58635649#Series\/encyclopaedia_of_mathematical_sciences_invariant_theory_and_algebraic_transformation_groups<\/a>> ; # Encyclopaedia of mathematical sciences. Invariant theory and algebraic transformation groups ;<\/span>\n\u00A0\u00A0\u00A0\nschema:isPartOf<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/58635649#Series\/encyclopaedia_of_mathematical_sciences<\/a>> ; # Encyclopaedia of mathematical sciences.<\/span>\n\u00A0\u00A0\u00A0\nschema:isPartOf<\/a> <http:\/\/worldcat.org\/issn\/0938-0396<\/a>> ; # Encyclopaedia of mathematical sciences,<\/span>\n\u00A0\u00A0\u00A0\nschema:isSimilarTo<\/a> <http:\/\/www.worldcat.org\/oclc\/988283787<\/a>> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Algebraic theory of locally nilpotent derivations<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:productID<\/a> \"1003701846<\/span>\" ;\u00A0\u00A0\u00A0\nschema:url<\/a> <https:\/\/public.ebookcentral.proquest.com\/choice\/publicfullrecord.aspx?p=5043127<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/rave.ohiolink.edu\/ebooks\/ebc\/9783662553503<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <https:\/\/link.springer.com\/book\/10.1007\/978-3-662-55350-3<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <https:\/\/doi.org\/10.1007\/978-3-662-55350-3<\/a>> ;\u00A0\u00A0\u00A0\nschema:workExample<\/a> <http:\/\/worldcat.org\/isbn\/9783662553503<\/a>> ;\u00A0\u00A0\u00A0\nwdrs:describedby<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/1003701846<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Related Entities<\/h3>\n
<http:\/\/dewey.info\/class\/516.35\/e23\/<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/58635649#Person\/freudenburg_gene<\/a>> # Gene Freudenburg<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Freudenburg<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Gene<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Gene Freudenburg<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/58635649#Series\/encyclopaedia_of_mathematical_sciences<\/a>> # Encyclopaedia of mathematical sciences.<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:PublicationSeries<\/a> ;\u00A0\u00A0\u00A0\nschema:hasPart<\/a> <http:\/\/www.worldcat.org\/oclc\/1003701846<\/a>> ; # Algebraic theory of locally nilpotent derivations<\/span>\n\u00A0\u00A0\u00A0\nschema:name<\/a> \"Encyclopaedia of mathematical sciences.<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Encyclopaedia of mathematical sciences ;<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/58635649#Series\/encyclopaedia_of_mathematical_sciences_invariant_theory_and_algebraic_transformation_groups<\/a>> # Encyclopaedia of mathematical sciences. Invariant theory and algebraic transformation groups ;<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:PublicationSeries<\/a> ;\u00A0\u00A0\u00A0\nschema:hasPart<\/a> <http:\/\/www.worldcat.org\/oclc\/1003701846<\/a>> ; # Algebraic theory of locally nilpotent derivations<\/span>\n\u00A0\u00A0\u00A0\nschema:name<\/a> \"Encyclopaedia of mathematical sciences. Invariant theory and algebraic transformation groups ;<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/58635649#Topic\/commutative_algebra<\/a>> # Commutative algebra<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Commutative algebra<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/58635649#Topic\/geometry_algebraic<\/a>> # Geometry, Algebraic<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Geometry, Algebraic<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/58635649#Topic\/mathematics_geometry_general<\/a>> # MATHEMATICS--Geometry--General<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"MATHEMATICS--Geometry--General<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/isbn\/9783662553503<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:ProductModel<\/a> ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"3662553503<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"9783662553503<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/issn\/0938-0396<\/a>> # Encyclopaedia of mathematical sciences,<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:PublicationSeries<\/a> ;\u00A0\u00A0\u00A0\nschema:hasPart<\/a> <http:\/\/www.worldcat.org\/oclc\/1003701846<\/a>> ; # Algebraic theory of locally nilpotent derivations<\/span>\n\u00A0\u00A0\u00A0\nschema:issn<\/a> \"0938-0396<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Encyclopaedia of mathematical sciences,<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/oclc\/988283787<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:CreativeWork<\/a> ;\u00A0\u00A0\u00A0\nrdfs:label<\/a> \"Algebraic theory of locally nilpotent derivations.<\/span>\" ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"Print version:<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isSimilarTo<\/a> <http:\/\/www.worldcat.org\/oclc\/1003701846<\/a>> ; # Algebraic theory of locally nilpotent derivations<\/span>\n\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n