Arrangements of hyperplanes (Book, 1992) [WorldCat.org]
skip to content
Arrangements of hyperplanes Preview this item
ClosePreview this item
Checking...

Arrangements of hyperplanes

Author: Peter Orlik; Hiroaki Terao
Publisher: Berlin ; New York : Springer-Verlag, ©1992.
Series: Grundlehren der mathematischen Wissenschaften, 300.
Edition/Format:   Print book : EnglishView all editions and formats
Summary:

Arrangements have emerged independently asimportant objects in various fields of mathematics such ascombinatorics, braids, configuration spaces, representationtheory,  Read more...

Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Additional Physical Format: Online version:
Orlik, Peter, 1938-
Arrangements of hyperplanes.
Berlin ; New York : Springer-Verlag, ©1992
(OCoLC)696254698
Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: Peter Orlik; Hiroaki Terao
ISBN: 3540552596 9783540552598 0387552596 9780387552590
OCLC Number: 25409160
Description: xviii, 325 pages : illustrations ; 25 cm.
Contents: 1. Introduction --
1.1. Introduction History --
1.2. Definitions and Examples --
1.3. Outline --
2. Combinatorics --
2.1. The Poset L(A) --
2.2. The Mobius Function --
2.3. The Poincare Polynomial --
2.4. Graphic Arrangements --
3. Algebras --
3.1. A(A) for Central Arrangements --
3.2. A(A) for Affine Arrangements --
3.3. Algebra Factorizations --
3.4. The Algebra B(A) --
3.5. Differential Forms --
4. Free Arrangements --
4.1. The Module D(A) --
4.2. Free Arrangements --
4.3. The Addition-Deletion Theorem --
4.4. The Modules [omega[superscript p]] (A) --
4.5. Lattice Homology --
4.6. The Characteristic Polynomial --
5. Topology --
5.1. The Complement M(A) --
5.2. The Homotopy Type of M(A) --
5.3. The Fundamental Group --
5.4. The Cohomology of M(A) --
5.5. The Fibration Theorem --
5.6. Related Research --
6. Reflection Arrangements --
6.1. Equivariant Theory --
6.2. Reflection Arrangements --
6.3. Free Arrangements --
6.4. The Structure of L(A) --
6.5. Restrictions --
6.6. Topology. A. Some Commutative Algebra --
A.1. Free Modules --
A.2. Krull Dimension --
A.3. Graded Modules --
A.4. Associated Primes and Regular Sequences. B. Basic Derivations --
B.1. The Infinite Families --
B.2. Exceptional Groups of Rank 2 --
B.3. Groups of Rank [actual symbol not reproducible] 3 --
B.4. The Coexponents. C. Orbit Types --
D. Three-Dimensional Restrictions.
Series Title: Grundlehren der mathematischen Wissenschaften, 300.
Responsibility: Peter Orlik, Hiroaki Terao.
More information:

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.