skip to content
Artificial neural networks and machine learning - ICANN 2019: deep learning : 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17-19, 2019, proceedings. Part 2 Preview this item
ClosePreview this item
Checking...

Artificial neural networks and machine learning - ICANN 2019: deep learning : 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17-19, 2019, proceedings. Part 2

Author: Igor V Tetko; V Kůrková; Pavel Karpov; Fabian J Theis
Publisher: Cham, Switzerland : Springer, [2019]
Series: Lecture notes in computer science, 11728.; LNCS sublibrary., SL 1,, Theoretical computer science and general issues.
Edition/Format:   eBook : Document : Conference publication : English
Summary:

The proceedings set LNCS 11727, 11728, 11729, 11730, and 11731 constitute the proceedings of the 28th International Conference on Artificial Neural Networks, ICANN 2019, held in Munich, Germany, in  Read more...

Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Conference papers and proceedings
Congresses
Material Type: Conference publication, Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Igor V Tetko; V Kůrková; Pavel Karpov; Fabian J Theis
ISBN: 9783030304843 3030304841
OCLC Number: 1120103209
Description: 1 online resource (xxx, 807 pages) : illustrations (some color).
Contents: Adaptive Graph Fusion for Unsupervised Feature Selection.- Unsupervised Feature Selection via Local Total-order Preservation.- Discrete Stochastic Search and its Application to Feature-Selection for Deep Relational Machines.- Joint Dictionary Learning for Unsupervised Feature Selection.- Comparison between Filter Criteria for Feature Selection in Regression.- CancelOut: A layer for feature selection in deep neural networks.- Adaptive-L2 Batch Neural Gas.- Application of Self Organizing Map to Preprocessing Input Vectors for Convolutional Neural Network.- Hierarchical Reinforcement Learning with Unlimited Recursive Subroutine Calls.- Automatic Augmentation by Hill Climbing.- Learning Camera-invariant Representation for Person Re-identification.- PA-RetinaNet: Path Augmented RetinaNet for Dense Object Detection.- Singular Value Decomposition and Neural Networks.- PCI: Principal Component Initialization for Deep Autoencoders.- Improving Weight Initialization of ReLU and Output Layers.- Post-synaptic potential regularization has potential.- A Novel Modification on the Levenberg-Marquardt Algorithm for Avoiding Overfitting in Neural Network Training.- Sign Based Derivative Filtering for Stochastic Gradient Descent.- Architecture-aware Bayesian Optimization for Neural Network Tuning.- Non-Convergence and Limit Cycles in the Adam Optimizer.- Learning Internal Dense But External Sparse Structures of Deep Convolutional Neural Network.- Using feature entropy to guide filter pruning for efficient convolutional networks.- Simultaneously Learning Architectures and Features of Deep Neural Networks.- Learning Sparse Hidden States in Long Short-Term Memory.- Multi-objective Pruning for CNNs using Genetic Algorithm.- Dynamically Sacrificing Accuracy for Reduced Computation: Cascaded Inference Based on Softmax Confidence.- Light-Weight Edge Enhanced Network for On-orbit Semantic Segmentation.- Local Normalization Based BN Layer Pruning.- On Practical Approach to Uniform Quantization of Non-redundant Neural Networks.- Residual learning for FC kernels of convolutional network.- A Novel Neural Network-based Symbolic Regression Method: Neuro-Encoded Expression Programming.- Compute-efficient neural network architecture optimization by a genetic algorithm.- Controlling Model Complexity in Probabilistic Model-Based Dynamic Optimization of Neural Network Structures.- Predictive Uncertainty Estimation with Temporal Convolutional Networks for Dynamic Evolutionary Optimization.- Sparse Recurrent Mixture Density Networks for Forecasting High Variability Time Series with Confidence Estimates.- A multitask learning neural network for short-term traffic speed prediction and confidence estimation.- Central-diffused Instance Generation Method in Class Incremental Learning.- Marginal Replay vs Conditional Replay for Continual Learning.- Simplified computation and interpretation of Fisher matrices in incremental learning with deep neural networks.- Active Learning for Image Recognition using a Visualization-Based User Interface.- Basic Evaluation Scenarios for Incrementally Trained Classifiers.- Embedding Complexity of Learned Representations in Neural Networks.- Joint Metric Learning on Riemannian Manifold of Global Gaussian Distributions.- Multi-Task Sparse Regression Metric Learning for Heterogeneous Classification.- Fast Approximate Geodesics for Deep Generative Models.- Spatial Attention Network for Few-Shot Learning.- Routine Modeling with Time Series Metric Learning.- Leveraging Domain Knowledge for Reinforcement Learning using MMC Architectures.- Conditions for Unnecessary Logical Constraints in Kernel Machines.- HiSeqGAN: Hierarchical Sequence Synthesis and Prediction.- DeepEX: Bridging the Gap Between Knowledge and Data Driven Techniques for Time Series Forecasting.- Transferable Adversarial Cycle Alignment for Domain Adaption.- Evaluation of domain adaptation approaches for robust classification of heterogeneous biological data sets.- Named Entity Recognition for Chinese Social Media with Domain Adversarial Training and Language Modeling.- Deep Domain Knowledge Distillation for Person Re-identification.- A study on catastrophic forgetting in deep LSTM networks.- A Label-specific Attention-based Network with Regularized Loss for Multi-label Classification.- An Empirical Study of Multi-domain and Multi-task Learning in Chinese Named Entity Recognition.- Filter Method Ensemble with Neural Networks.- Dynamic Centroid Insertion and Adjustment for Data Sets with Multiple Imbalanced Classes.- Increasing the Generalisaton Capacity of Conditional VAEs.- Playing the Large Margin Preference Game.
Series Title: Lecture notes in computer science, 11728.; LNCS sublibrary., SL 1,, Theoretical computer science and general issues.
Responsibility: Igor V. Tetko, Věra Kůrková, Pavel Karpov, Fabian Theis (eds.).

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/1120103209> # Artificial neural networks and machine learning - ICANN 2019: deep learning : 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17-19, 2019, proceedings. Part 2
    a schema:Book, schema:MediaObject, schema:CreativeWork ;
    library:oclcnum "1120103209" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/sz> ;
    schema:about <http://dewey.info/class/006.32/e23/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/9538473394#Topic/machine_learning> ; # Machine learning
    schema:about <http://experiment.worldcat.org/entity/work/data/9538473394#Topic/neural_networks_computer_science> ; # Neural networks (Computer science)
    schema:about <http://experiment.worldcat.org/entity/work/data/9538473394#Topic/artificial_intelligence> ; # Artificial intelligence
    schema:bookFormat schema:EBook ;
    schema:creator <http://experiment.worldcat.org/entity/work/data/9538473394#Meeting/international_conference_on_artificial_neural_networks_european_neural_network_society_28th_2019_munich_germany> ; # International Conference on Artificial Neural Networks (European Neural Network Society) (28th : 2019 : Munich, Germany)
    schema:datePublished "2019" ;
    schema:editor <http://experiment.worldcat.org/entity/work/data/9538473394#Person/kurkova_v_vera_1948> ; # Vera Kůrková
    schema:editor <http://experiment.worldcat.org/entity/work/data/9538473394#Person/karpov_pavel> ; # Pavel Karpov
    schema:editor <http://experiment.worldcat.org/entity/work/data/9538473394#Person/theis_fabian_j> ; # Fabian J. Theis
    schema:editor <http://experiment.worldcat.org/entity/work/data/9538473394#Person/tetko_igor_v> ; # Igor V. Tetko
    schema:exampleOfWork <http://worldcat.org/entity/work/id/9538473394> ;
    schema:genre "Conference papers and proceedings"@en ;
    schema:genre "Conference publication"@en ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://worldcat.org/issn/1611-3349> ; # Lecture notes in computer science,
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/9538473394#Series/lecture_notes_in_computer_science> ; # Lecture notes in computer science ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/9538473394#Series/lncs_sublibrary_sl1_theoretical_computer_science_and_general_issues> ; # LNCS sublibrary: SL1 - Theoretical computer science and general issues
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/9538473394#Series/lncs_sublibrary> ; # LNCS sublibrary.
    schema:name "Artificial neural networks and machine learning - ICANN 2019: deep learning : 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17-19, 2019, proceedings. Part 2"@en ;
    schema:productID "1120103209" ;
    schema:url <https://doi.org/10.1007/978-3-030-30484-3> ;
    schema:workExample <http://dx.doi.org/10.1007/978-3-030-30484-3> ;
    schema:workExample <http://worldcat.org/isbn/9783030304843> ;
    umbel:isLike <http://bnb.data.bl.uk/id/resource/GBB9G3422> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/1120103209> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/9538473394#Meeting/international_conference_on_artificial_neural_networks_european_neural_network_society_28th_2019_munich_germany> # International Conference on Artificial Neural Networks (European Neural Network Society) (28th : 2019 : Munich, Germany)
    a bgn:Meeting, schema:Event ;
    schema:location <http://experiment.worldcat.org/entity/work/data/9538473394#Place/munich_germany> ; # Munich, Germany)
    schema:name "International Conference on Artificial Neural Networks (European Neural Network Society) (28th : 2019 : Munich, Germany)" ;
    .

<http://experiment.worldcat.org/entity/work/data/9538473394#Person/karpov_pavel> # Pavel Karpov
    a schema:Person ;
    schema:familyName "Karpov" ;
    schema:givenName "Pavel" ;
    schema:name "Pavel Karpov" ;
    .

<http://experiment.worldcat.org/entity/work/data/9538473394#Person/kurkova_v_vera_1948> # Vera Kůrková
    a schema:Person ;
    schema:birthDate "1948" ;
    schema:familyName "Kůrková" ;
    schema:givenName "Vera" ;
    schema:givenName "V." ;
    schema:name "Vera Kůrková" ;
    .

<http://experiment.worldcat.org/entity/work/data/9538473394#Person/tetko_igor_v> # Igor V. Tetko
    a schema:Person ;
    schema:familyName "Tetko" ;
    schema:givenName "Igor V." ;
    schema:name "Igor V. Tetko" ;
    .

<http://experiment.worldcat.org/entity/work/data/9538473394#Person/theis_fabian_j> # Fabian J. Theis
    a schema:Person ;
    schema:familyName "Theis" ;
    schema:givenName "Fabian J." ;
    schema:name "Fabian J. Theis" ;
    .

<http://experiment.worldcat.org/entity/work/data/9538473394#Place/munich_germany> # Munich, Germany)
    a schema:Place ;
    schema:name "Munich, Germany)" ;
    .

<http://experiment.worldcat.org/entity/work/data/9538473394#Series/lecture_notes_in_computer_science> # Lecture notes in computer science ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/1120103209> ; # Artificial neural networks and machine learning - ICANN 2019: deep learning : 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17-19, 2019, proceedings. Part 2
    schema:name "Lecture notes in computer science ;" ;
    .

<http://experiment.worldcat.org/entity/work/data/9538473394#Series/lncs_sublibrary> # LNCS sublibrary.
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/1120103209> ; # Artificial neural networks and machine learning - ICANN 2019: deep learning : 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17-19, 2019, proceedings. Part 2
    schema:name "LNCS sublibrary." ;
    .

<http://experiment.worldcat.org/entity/work/data/9538473394#Series/lncs_sublibrary_sl1_theoretical_computer_science_and_general_issues> # LNCS sublibrary: SL1 - Theoretical computer science and general issues
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/1120103209> ; # Artificial neural networks and machine learning - ICANN 2019: deep learning : 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17-19, 2019, proceedings. Part 2
    schema:name "LNCS sublibrary: SL1 - Theoretical computer science and general issues" ;
    .

<http://experiment.worldcat.org/entity/work/data/9538473394#Topic/artificial_intelligence> # Artificial intelligence
    a schema:Intangible ;
    schema:name "Artificial intelligence"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/9538473394#Topic/neural_networks_computer_science> # Neural networks (Computer science)
    a schema:Intangible ;
    schema:name "Neural networks (Computer science)"@en ;
    .

<http://worldcat.org/isbn/9783030304843>
    a schema:ProductModel ;
    schema:isbn "3030304841" ;
    schema:isbn "9783030304843" ;
    .

<http://worldcat.org/issn/1611-3349> # Lecture notes in computer science,
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/1120103209> ; # Artificial neural networks and machine learning - ICANN 2019: deep learning : 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17-19, 2019, proceedings. Part 2
    schema:issn "1611-3349" ;
    schema:name "Lecture notes in computer science," ;
    .

<http://www.worldcat.org/title/-/oclc/1120103209>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
    schema:about <http://www.worldcat.org/oclc/1120103209> ; # Artificial neural networks and machine learning - ICANN 2019: deep learning : 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17-19, 2019, proceedings. Part 2
    schema:dateModified "2019-10-12" ;
    void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.