skip to content
Covid-19 virus
COVID-19 Resources

Reliable information about the coronavirus (COVID-19) is available from the World Health Organization (current situation, international travel). Numerous and frequently-updated resource results are available from this WorldCat.org search. OCLC’s WebJunction has pulled together information and resources to assist library staff as they consider how to handle coronavirus issues in their communities.

Image provided by: CDC/ Alissa Eckert, MS; Dan Higgins, MAM
Asymptotic analysis for integrable connections with irregular singular points Preview this item
ClosePreview this item
Checking...

Asymptotic analysis for integrable connections with irregular singular points

Author: Hideyuki Majima
Publisher: Berlin ; New York : Springer-Verlag, 1984.
Series: Lecture notes in mathematics (Springer-Verlag), 1075.
Edition/Format:   Print book : EnglishView all editions and formats
Summary:
"Using strongly asymptotic expansions of functions of several variables, we prove existence theorems of asymptotic solutions to integrable systems of partial differential equations of the first order with irregular singular points under certain general conditions. We also prove analytic splitting lemmas for completely integrable linear Pfaffian systems. Moreover, for integrable connections with irregular singular  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Additional Physical Format: Online version:
Majima, Hideyuki, 1952-
Asymptotic analysis for integrable connections with irregular singular points.
Berlin ; New York : Springer-Verlag, 1984
(OCoLC)624427557
Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: Hideyuki Majima
ISBN: 0387133755 9780387133751 3540133755 9783540133759
OCLC Number: 11187526
Description: vi, 159 pages : illustrations ; 25 cm
Contents: General introduction --
Asymptotic developability and vanishing theorems in asymptotic analysis --
Existence theorems of asymptotic solutions to systems of partial differential equations of the first order and splitting lemmas --
Stokes phenomena and Riemann-Hilbert-Birkhoff problem for integrable connections with irregular singular points --
The ∇-Poincaré's lemma and ∇-deRham cohomology theorem for integrable connections with irregular singular points.
Series Title: Lecture notes in mathematics (Springer-Verlag), 1075.
Responsibility: Hideyuki Majima.

Abstract:

"Using strongly asymptotic expansions of functions of several variables, we prove existence theorems of asymptotic solutions to integrable systems of partial differential equations of the first order with irregular singular points under certain general conditions. We also prove analytic splitting lemmas for completely integrable linear Pfaffian systems. Moreover, for integrable connections with irregular singular points, we formulate and solve the Riemann­-Hilbert-­Birkhoff problem, and prove analogues of Poincare's lemma and de Rham cohomology theorem under certain general conditions."

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


\n\n

Primary Entity<\/h3>\n
<http:\/\/www.worldcat.org\/oclc\/11187526<\/a>> # Asymptotic analysis for integrable connections with irregular singular points<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:CreativeWork<\/a>, schema:Book<\/a> ;\u00A0\u00A0\u00A0\nlibrary:oclcnum<\/a> \"11187526<\/span>\" ;\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/id.loc.gov\/vocabulary\/countries\/gw<\/a>> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/id.loc.gov\/authorities\/subjects\/sh85037913<\/a>> ; # Differential equations, Partial--Asymptotic theory<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4156703#Topic\/pfaff_equations_de<\/a>> ; # Pfaff, \u00C9quations de<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4156703#Topic\/faisceaux_theorie_des<\/a>> ; # Faisceaux, Th\u00E9orie des<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4156703#Topic\/partial_differential_equations<\/a>> ; # PARTIAL DIFFERENTIAL EQUATIONS<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4156703#Topic\/pfaff_equation<\/a>> ; # PFAFF EQUATION<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/dewey.info\/class\/510\/e19\/<\/a>> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/id.worldcat.org\/fast\/1059998<\/a>> ; # Pfaffian problem<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/id.worldcat.org\/fast\/893485<\/a>> ; # Differential equations, Partial--Asymptotic theory<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/id.worldcat.org\/fast\/1115421<\/a>> ; # Sheaf theory<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4156703#Topic\/homology<\/a>> ; # HOMOLOGY<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4156703#Topic\/asymptotic_methods<\/a>> ; # ASYMPTOTIC METHODS<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4156703#Topic\/equations_aux_derivees_partielles_theorie_asymptotique<\/a>> ; # \u00C9quations aux d\u00E9riv\u00E9es partielles--Th\u00E9orie asymptotique<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/id.worldcat.org\/fast\/959720<\/a>> ; # Homology theory<\/span>\n\u00A0\u00A0\u00A0\nschema:author<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4156703#Person\/majima_hideyuki_1952<\/a>> ; # Hideyuki Majima<\/span>\n\u00A0\u00A0\u00A0\nschema:bookFormat<\/a> bgn:PrintBook<\/a> ;\u00A0\u00A0\u00A0\nschema:datePublished<\/a> \"1984<\/span>\" ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"\"Using strongly asymptotic expansions of functions of several variables, we prove existence theorems of asymptotic solutions to integrable systems of partial differential equations of the first order with irregular singular points under certain general conditions. We also prove analytic splitting lemmas for completely integrable linear Pfaffian systems. Moreover, for integrable connections with irregular singular points, we formulate and solve the Riemann\u00AD-Hilbert-\u00ADBirkhoff problem, and prove analogues of Poincare\'s lemma and de Rham cohomology theorem under certain general conditions.\"<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"General introduction -- Asymptotic developability and vanishing theorems in asymptotic analysis -- Existence theorems of asymptotic solutions to systems of partial differential equations of the first order and splitting lemmas -- Stokes phenomena and Riemann-Hilbert-Birkhoff problem for integrable connections with irregular singular points -- The \u2207-Poincar\u00E9\'s lemma and \u2207-deRham cohomology theorem for integrable connections with irregular singular points.<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:exampleOfWork<\/a> <http:\/\/worldcat.org\/entity\/work\/id\/4156703<\/a>> ;\u00A0\u00A0\u00A0\nschema:inLanguage<\/a> \"en<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isPartOf<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4156703#Series\/lecture_notes_in_mathematics_springer_verlag<\/a>> ; # Lecture notes in mathematics (Springer-Verlag) ;<\/span>\n\u00A0\u00A0\u00A0\nschema:isPartOf<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4156703#Series\/lecture_notes_in_mathematics<\/a>> ; # Lecture notes in mathematics ;<\/span>\n\u00A0\u00A0\u00A0\nschema:isSimilarTo<\/a> <http:\/\/www.worldcat.org\/oclc\/624427557<\/a>> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Asymptotic analysis for integrable connections with irregular singular points<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:productID<\/a> \"11187526<\/span>\" ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/swbplus.bsz-bw.de\/bsz00936496Xcov.htm<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/www.gbv.de\/dms\/hbz\/toc\/ht002483623.pdf<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/digitool.hbz-nrw.de:1801\/webclient\/DeliveryManager?pid=2157611&custom_att_2=simple_viewer<\/a>> ;\u00A0\u00A0\u00A0\nschema:workExample<\/a> <http:\/\/worldcat.org\/isbn\/9780387133751<\/a>> ;\u00A0\u00A0\u00A0\nschema:workExample<\/a> <http:\/\/worldcat.org\/isbn\/9783540133759<\/a>> ;\u00A0\u00A0\u00A0\numbel:isLike<\/a> <http:\/\/d-nb.info\/840799071<\/a>> ;\u00A0\u00A0\u00A0\nwdrs:describedby<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/11187526<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Related Entities<\/h3>\n
<http:\/\/dewey.info\/class\/510\/e19\/<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4156703#Person\/majima_hideyuki_1952<\/a>> # Hideyuki Majima<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:birthDate<\/a> \"1952<\/span>\" ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Majima<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Hideyuki<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Hideyuki Majima<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4156703#Series\/lecture_notes_in_mathematics<\/a>> # Lecture notes in mathematics ;<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:PublicationSeries<\/a> ;\u00A0\u00A0\u00A0\nschema:hasPart<\/a> <http:\/\/www.worldcat.org\/oclc\/11187526<\/a>> ; # Asymptotic analysis for integrable connections with irregular singular points<\/span>\n\u00A0\u00A0\u00A0\nschema:name<\/a> \"Lecture notes in mathematics ;<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4156703#Series\/lecture_notes_in_mathematics_springer_verlag<\/a>> # Lecture notes in mathematics (Springer-Verlag) ;<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:PublicationSeries<\/a> ;\u00A0\u00A0\u00A0\nschema:hasPart<\/a> <http:\/\/www.worldcat.org\/oclc\/11187526<\/a>> ; # Asymptotic analysis for integrable connections with irregular singular points<\/span>\n\u00A0\u00A0\u00A0\nschema:name<\/a> \"Lecture notes in mathematics (Springer-Verlag) ;<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4156703#Topic\/asymptotic_methods<\/a>> # ASYMPTOTIC METHODS<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"ASYMPTOTIC METHODS<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4156703#Topic\/equations_aux_derivees_partielles_theorie_asymptotique<\/a>> # \u00C9quations aux d\u00E9riv\u00E9es partielles--Th\u00E9orie asymptotique<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"\u00C9quations aux d\u00E9riv\u00E9es partielles--Th\u00E9orie asymptotique<\/span>\"@fr<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4156703#Topic\/faisceaux_theorie_des<\/a>> # Faisceaux, Th\u00E9orie des<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Faisceaux, Th\u00E9orie des<\/span>\"@fr<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4156703#Topic\/homology<\/a>> # HOMOLOGY<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"HOMOLOGY<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4156703#Topic\/partial_differential_equations<\/a>> # PARTIAL DIFFERENTIAL EQUATIONS<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"PARTIAL DIFFERENTIAL EQUATIONS<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4156703#Topic\/pfaff_equation<\/a>> # PFAFF EQUATION<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"PFAFF EQUATION<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4156703#Topic\/pfaff_equations_de<\/a>> # Pfaff, \u00C9quations de<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Pfaff, \u00C9quations de<\/span>\"@fr<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.loc.gov\/authorities\/subjects\/sh85037913<\/a>> # Differential equations, Partial--Asymptotic theory<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Differential equations, Partial--Asymptotic theory<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.loc.gov\/vocabulary\/countries\/gw<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\ndcterms:identifier<\/a> \"gw<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.worldcat.org\/fast\/1059998<\/a>> # Pfaffian problem<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Pfaffian problem<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.worldcat.org\/fast\/1115421<\/a>> # Sheaf theory<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Sheaf theory<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.worldcat.org\/fast\/893485<\/a>> # Differential equations, Partial--Asymptotic theory<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Differential equations, Partial--Asymptotic theory<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.worldcat.org\/fast\/959720<\/a>> # Homology theory<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Homology theory<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/isbn\/9780387133751<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:ProductModel<\/a> ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"0387133755<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"9780387133751<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/isbn\/9783540133759<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:ProductModel<\/a> ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"3540133755<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"9783540133759<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/oclc\/624427557<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:CreativeWork<\/a> ;\u00A0\u00A0\u00A0\nrdfs:label<\/a> \"Asymptotic analysis for integrable connections with irregular singular points.<\/span>\" ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"Online version:<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isSimilarTo<\/a> <http:\/\/www.worldcat.org\/oclc\/11187526<\/a>> ; # Asymptotic analysis for integrable connections with irregular singular points<\/span>\n\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n