skip to content
Automated machine learning : methods, systems, challenges Preview this item
ClosePreview this item
Checking...

Automated machine learning : methods, systems, challenges

Author: Frank Hutter; Lars Kotthoff; Joaquin Vanschoren
Publisher: Cham, Switzerland : Springer, 2019.
Series: Springer series on challenges in machine learning
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Printed edition:
Printed edition:
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Frank Hutter; Lars Kotthoff; Joaquin Vanschoren
ISBN: 9783030053185 3030053180 9783030053192 3030053199
OCLC Number: 1105039769
Description: 1 online resource (xiv, 219 pages) : illustrations (some color).
Contents: 1 Hyperparameter Optimization --
2 Meta-Learning --
3 Neural Architecture Search --
4 Auto-WEKA --
5 Hyperopt-Sklearn --
6 Auto-sklearn --
7 Towards Automatically-Tuned Deep Neural Networks --
8 TPOT --
9 The Automatic Statistician --
10 AutoML Challenges.
Series Title: Springer series on challenges in machine learning
Responsibility: Frank Hutter, Lars Kotthoff, Joaquin Vanschoren, editors.

Abstract:

This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and  Read more...

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Related Subjects:(1)

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/1105039769> # Automated machine learning : methods, systems, challenges
    a schema:CreativeWork, schema:Book, schema:MediaObject ;
    library:oclcnum "1105039769" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/sz> ;
    schema:about <http://dewey.info/class/006.31/e23/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/9342237541#Topic/machine_learning> ; # Machine learning
    schema:bookFormat schema:EBook ;
    schema:datePublished "2019" ;
    schema:description "This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work."@en ;
    schema:description "1 Hyperparameter Optimization -- 2 Meta-Learning -- 3 Neural Architecture Search -- 4 Auto-WEKA -- 5 Hyperopt-Sklearn -- 6 Auto-sklearn -- 7 Towards Automatically-Tuned Deep Neural Networks -- 8 TPOT -- 9 The Automatic Statistician -- 10 AutoML Challenges."@en ;
    schema:editor <http://experiment.worldcat.org/entity/work/data/9342237541#Person/kotthoff_lars> ; # Lars Kotthoff
    schema:editor <http://experiment.worldcat.org/entity/work/data/9342237541#Person/hutter_frank> ; # Frank Hutter
    schema:editor <http://experiment.worldcat.org/entity/work/data/9342237541#Person/vanschoren_joaquin> ; # Joaquin Vanschoren
    schema:exampleOfWork <http://worldcat.org/entity/work/id/9342237541> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://worldcat.org/issn/2520-131X> ; # Springer series on challenges in machine learning,
    schema:isSimilarTo <http://worldcat.org/entity/work/data/9342237541#CreativeWork/> ;
    schema:name "Automated machine learning : methods, systems, challenges"@en ;
    schema:productID "1105039769" ;
    schema:url <https://doi.org/10.1007/978-3-030-05318-5> ;
    schema:url <http://ezaccess.libraries.psu.edu/login?url=https://doi.org/10.1007/978-3-030-05318-5> ;
    schema:url <http://ezsecureaccess.balamand.edu.lb/login?url=https://doi.org/10.1007/978-3-030-05318-5> ;
    schema:url <https://link.springer.com/10.1007/978-3-030-05318-5> ;
    schema:url <https://ezproxy.lau.edu.lb:2443/login?url=https://doi.org/10.1007/978-3-030-05318-5> ;
    schema:url <http://public.eblib.com/choice/PublicFullRecord.aspx?p=5788944> ;
    schema:workExample <http://worldcat.org/isbn/9783030053185> ;
    schema:workExample <http://dx.doi.org/10.1007/978-3-030-05318-5> ;
    schema:workExample <http://worldcat.org/isbn/9783030053192> ;
    umbel:isLike <http://bnb.data.bl.uk/id/resource/GBB9B1535> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/1105039769> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/9342237541#Person/hutter_frank> # Frank Hutter
    a schema:Person ;
    schema:familyName "Hutter" ;
    schema:givenName "Frank" ;
    schema:name "Frank Hutter" ;
    .

<http://experiment.worldcat.org/entity/work/data/9342237541#Person/kotthoff_lars> # Lars Kotthoff
    a schema:Person ;
    schema:familyName "Kotthoff" ;
    schema:givenName "Lars" ;
    schema:name "Lars Kotthoff" ;
    .

<http://experiment.worldcat.org/entity/work/data/9342237541#Person/vanschoren_joaquin> # Joaquin Vanschoren
    a schema:Person ;
    schema:familyName "Vanschoren" ;
    schema:givenName "Joaquin" ;
    schema:name "Joaquin Vanschoren" ;
    .

<http://worldcat.org/entity/work/data/9342237541#CreativeWork/>
    a schema:CreativeWork ;
    schema:description "Printed edition:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/1105039769> ; # Automated machine learning : methods, systems, challenges
    .

<http://worldcat.org/isbn/9783030053185>
    a schema:ProductModel ;
    schema:isbn "3030053180" ;
    schema:isbn "9783030053185" ;
    .

<http://worldcat.org/isbn/9783030053192>
    a schema:ProductModel ;
    schema:isbn "3030053199" ;
    schema:isbn "9783030053192" ;
    .

<http://worldcat.org/issn/2520-131X> # Springer series on challenges in machine learning,
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/1105039769> ; # Automated machine learning : methods, systems, challenges
    schema:issn "2520-131X" ;
    schema:name "Springer series on challenges in machine learning," ;
    schema:name "The Springer series on challenges in machine learning," ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.