skip to content
Battery wear from disparate duty-cycles : opportunities for electric-drive vehicle battery health management : preprint Preview this item
ClosePreview this item
Checking...

Battery wear from disparate duty-cycles : opportunities for electric-drive vehicle battery health management : preprint

Author: Kandler Smith; National Renewable Energy Laboratory (U.S.); et al
Publisher: [Golden, CO] : National Renewable Energy Laboratory, [2012]
Series: Conference paper (National Renewable Energy Laboratory (U.S.)), 5400-54698.
Edition/Format:   eBook : Document : National government publication : English
Database:WorldCat
Summary:
Electric-drive vehicles utilizing lithium-ion batteries experience wholly different degradation patterns than do conventional vehicles, depending on geographic ambient conditions and consumer driving and charging patterns. A semi-empirical life-predictive model for the lithium-ion graphite/nickel-cobalt-aluminum chemistry is presented that accounts for physically justified calendar and cycling fade mechanisms. An  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Material Type: Document, Government publication, National government publication, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Kandler Smith; National Renewable Energy Laboratory (U.S.); et al
OCLC Number: 823000557
Notes: Title from PDF title screen (viewed on Dec. 28, 2012).
"October 2012."
"Presented at the 2012 American Control Conference, Montreal, Canada, June 27-29, 2012."
Description: 1 online resource (7 p.) : col. ill.
Details: Full text available via Internet in .pdf format. Adobe Acrobat Reader required.
Series Title: Conference paper (National Renewable Energy Laboratory (U.S.)), 5400-54698.
Other Titles: Battery wear from disparate duty cycles :
Opportunities for electric-drive vehicle battery health management
Responsibility: K. Smith ... [et al.].

Abstract:

Electric-drive vehicles utilizing lithium-ion batteries experience wholly different degradation patterns than do conventional vehicles, depending on geographic ambient conditions and consumer driving and charging patterns. A semi-empirical life-predictive model for the lithium-ion graphite/nickel-cobalt-aluminum chemistry is presented that accounts for physically justified calendar and cycling fade mechanisms. An analysis of battery life for plug-in hybrid electric vehicles considers 782 duty-cycles from travel survey data superimposed with climate data from multiple geographic locations around the United States. Based on predicted wear distributions, opportunities for extending battery life including modification of battery operating limits, thermal and charge control are discussed.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


<http://www.worldcat.org/oclc/823000557>
library:oclcnum"823000557"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/823000557>
rdf:typeschema:Book
schema:about
<http://id.loc.gov/authorities/subjects/sh2009010945>
rdf:typeschema:Intangible
schema:name"Electric vehicles--Batteries--Service life."@en
schema:name"Electric vehicles--Batteries."@en
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:contributor
schema:contributor
<http://viaf.org/viaf/153668500>
rdf:typeschema:Organization
schema:name"National Renewable Energy Laboratory (U.S.)"
schema:datePublished"2012"
schema:description"Electric-drive vehicles utilizing lithium-ion batteries experience wholly different degradation patterns than do conventional vehicles, depending on geographic ambient conditions and consumer driving and charging patterns. A semi-empirical life-predictive model for the lithium-ion graphite/nickel-cobalt-aluminum chemistry is presented that accounts for physically justified calendar and cycling fade mechanisms. An analysis of battery life for plug-in hybrid electric vehicles considers 782 duty-cycles from travel survey data superimposed with climate data from multiple geographic locations around the United States. Based on predicted wear distributions, opportunities for extending battery life including modification of battery operating limits, thermal and charge control are discussed."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/1191792890>
schema:inLanguage"en"
schema:name"Battery wear from disparate duty-cycles opportunities for electric-drive vehicle battery health management : preprint"@en
schema:name"Opportunities for electric-drive vehicle battery health management"@en
schema:name"Battery wear from disparate duty cycles :"@en
schema:publisher
schema:url<http://purl.fdlp.gov/GPO/gpo22271>
schema:url
schema:url<http://www.nrel.gov/docs/fy13osti/54698.pdf>

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.