skip to content
Bayesian hierarchical models : with applications using R Preview this item
ClosePreview this item
Checking...

Bayesian hierarchical models : with applications using R

Author: P Congdon
Publisher: Milton : CRC Press LLC, 2019.
Edition/Format:   eBook : Document : English : 2nd edView all editions and formats
Summary:
An intermediate-level treatment of Bayesian hierarchical models and their applications, this book demonstrates the advantages of a Bayesian approach to data sets involving inferences for collections of related units or variables, and in methods where parameters can be treated as random collections. Through illustrative data analysis and attention to statistical computing, this book facilitates practical  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Congdon, Peter D.
Bayesian Hierarchical Models : With Applications Using R, Second Edition
Milton : CRC Press LLC,c2019
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: P Congdon
ISBN: 9781498785914 1498785913 9780429113352 0429113358 9780429532900 0429532903 9780429547607 0429547609
OCLC Number: 1120692089
Notes: Description based upon print version of record.
Description: 1 online resource (593 p.)
Contents: Chapter 1 Bayesian Methods for Complex Data: Estimation and Inference; Chapter 2 Computing Options and Strategies; Chapter 3 Model Fit, Comparison, and Checking; Chapter 4 Borrowing Strength Estimation for Exchangeable Units; Chapter 5 Structured Priors Recognizing Similarity over Time and Space; Chapter 6 Regression Techniques using Hierarchical Priors; Chapter 7 Multilevel Models; Chapter 8 Regression for Causal Effects with Observational Data; Chapter 9 Hierarchical Models for Panel Data; Chapter 10 Multivariate Priors, with a Focus on Factor and Structural Equation Models; Chapter 11 Survival and Event History Models; Chapter 12 Hierarchical Methods for Nonlinear Regression.
Other Titles: Applied Bayesian hierarchical methods
Responsibility: Peter D. Congdon.

Abstract:

An intermediate-level treatment of Bayesian hierarchical models and their applications, this book demonstrates the advantages of a Bayesian approach to data sets involving inferences for collections of related units or variables, and in methods where parameters can be treated as random collections. Through illustrative data analysis and attention to statistical computing, this book facilitates practical implementation of Bayesian hierarchical methods. The new edition is a revision of the book Applied Bayesian Hierarchical Methods. It maintains a focus on applied modelling and data analysis, but now using entirely R-based Bayesian computing options. It has been updated with a new chapter on regression for causal effects, and one on computing options and strategies. This latter chapter is particularly important, due to recent advances in Bayesian computing and estimation, including the development of rjags and rstan. It also features updates throughout with new examples. The examples exploit and illustrate the broader advantages of the R computing environment, while allowing readers to explore alternative likelihood assumptions, regression structures, and assumptions on prior densities. Features: Provides a comprehensive and accessible overview of applied Bayesian hierarchical modelling Includes many real data examples to illustrate topics R code (based on rjags, jagsUI, R2OpenBUGS, and rstan) is integrated into the book, emphasizing implementation Software options and coding principles are introduced in new chapter on computing Programs and data sets available on the book's website

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/1120692089> # Bayesian hierarchical models : with applications using R
    a schema:CreativeWork, schema:Book, schema:MediaObject ;
    library:oclcnum "1120692089" ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/9107542837#Place/milton> ; # Milton
    schema:about <http://experiment.worldcat.org/entity/work/data/9107542837#Topic/mathematics_probability_&_statistics_general> ; # MATHEMATICS / Probability & Statistics / General
    schema:about <http://dewey.info/class/519.542/e23/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/9107542837#Topic/bayesian_statistical_decision_theory> ; # Bayesian statistical decision theory
    schema:bookEdition "2nd ed." ;
    schema:bookFormat schema:EBook ;
    schema:creator <http://experiment.worldcat.org/entity/work/data/9107542837#Person/congdon_p> ; # P. Congdon
    schema:datePublished "2019" ;
    schema:description "An intermediate-level treatment of Bayesian hierarchical models and their applications, this book demonstrates the advantages of a Bayesian approach to data sets involving inferences for collections of related units or variables, and in methods where parameters can be treated as random collections. Through illustrative data analysis and attention to statistical computing, this book facilitates practical implementation of Bayesian hierarchical methods. The new edition is a revision of the book Applied Bayesian Hierarchical Methods. It maintains a focus on applied modelling and data analysis, but now using entirely R-based Bayesian computing options. It has been updated with a new chapter on regression for causal effects, and one on computing options and strategies. This latter chapter is particularly important, due to recent advances in Bayesian computing and estimation, including the development of rjags and rstan. It also features updates throughout with new examples. The examples exploit and illustrate the broader advantages of the R computing environment, while allowing readers to explore alternative likelihood assumptions, regression structures, and assumptions on prior densities. Features: Provides a comprehensive and accessible overview of applied Bayesian hierarchical modelling Includes many real data examples to illustrate topics R code (based on rjags, jagsUI, R2OpenBUGS, and rstan) is integrated into the book, emphasizing implementation Software options and coding principles are introduced in new chapter on computing Programs and data sets available on the book's website"@en ;
    schema:description "Chapter 1 Bayesian Methods for Complex Data: Estimation and Inference; Chapter 2 Computing Options and Strategies; Chapter 3 Model Fit, Comparison, and Checking; Chapter 4 Borrowing Strength Estimation for Exchangeable Units; Chapter 5 Structured Priors Recognizing Similarity over Time and Space; Chapter 6 Regression Techniques using Hierarchical Priors; Chapter 7 Multilevel Models; Chapter 8 Regression for Causal Effects with Observational Data; Chapter 9 Hierarchical Models for Panel Data; Chapter 10 Multivariate Priors, with a Focus on Factor and Structural Equation Models; Chapter 11 Survival and Event History Models; Chapter 12 Hierarchical Methods for Nonlinear Regression."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/9107542837> ; # Applied Bayesian hierarchical methods
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isSimilarTo <http://worldcat.org/entity/work/data/9107542837#CreativeWork/bayesian_hierarchical_models_with_applications_using_r_second_edition> ;
    schema:name "Bayesian hierarchical models : with applications using R"@en ;
    schema:productID "1120692089" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/1120692089#PublicationEvent/milton_crc_press_llc_2019> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/9107542837#Agent/crc_press_llc> ; # CRC Press LLC
    schema:url <https://www.taylorfrancis.com/books/9780429113352> ;
    schema:url <http://public.eblib.com/choice/PublicFullRecord.aspx?p=5896611> ;
    schema:workExample <http://worldcat.org/isbn/9780429547607> ;
    schema:workExample <http://worldcat.org/isbn/9781498785914> ;
    schema:workExample <http://worldcat.org/isbn/9780429113352> ;
    schema:workExample <http://worldcat.org/isbn/9780429532900> ;
    umbel:isLike <http://bnb.data.bl.uk/id/resource/GBB9F3645> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/1120692089> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/9107542837#Agent/crc_press_llc> # CRC Press LLC
    a bgn:Agent ;
    schema:name "CRC Press LLC" ;
    .

<http://experiment.worldcat.org/entity/work/data/9107542837#Person/congdon_p> # P. Congdon
    a schema:Person ;
    schema:familyName "Congdon" ;
    schema:givenName "P." ;
    schema:name "P. Congdon" ;
    .

<http://experiment.worldcat.org/entity/work/data/9107542837#Topic/bayesian_statistical_decision_theory> # Bayesian statistical decision theory
    a schema:Intangible ;
    schema:name "Bayesian statistical decision theory"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/9107542837#Topic/mathematics_probability_&_statistics_general> # MATHEMATICS / Probability & Statistics / General
    a schema:Intangible ;
    schema:name "MATHEMATICS / Probability & Statistics / General"@en ;
    .

<http://worldcat.org/entity/work/data/9107542837#CreativeWork/bayesian_hierarchical_models_with_applications_using_r_second_edition>
    a schema:CreativeWork ;
    rdfs:label "Bayesian Hierarchical Models : With Applications Using R, Second Edition" ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/1120692089> ; # Bayesian hierarchical models : with applications using R
    .

<http://worldcat.org/entity/work/id/9107542837> # Applied Bayesian hierarchical methods
    schema:name "Applied Bayesian hierarchical methods" ;
    .

<http://worldcat.org/isbn/9780429113352>
    a schema:ProductModel ;
    schema:isbn "0429113358" ;
    schema:isbn "9780429113352" ;
    .

<http://worldcat.org/isbn/9780429532900>
    a schema:ProductModel ;
    schema:isbn "0429532903" ;
    schema:isbn "9780429532900" ;
    .

<http://worldcat.org/isbn/9780429547607>
    a schema:ProductModel ;
    schema:isbn "0429547609" ;
    schema:isbn "9780429547607" ;
    .

<http://worldcat.org/isbn/9781498785914>
    a schema:ProductModel ;
    schema:isbn "1498785913" ;
    schema:isbn "9781498785914" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.