## Find a copy online

### Links to this item

## Find a copy in the library

Finding libraries that hold this item...

## Details

Genre/Form: | Electronic books |
---|---|

Additional Physical Format: | Print version: Congdon, Peter D. Bayesian Hierarchical Models : With Applications Using R, Second Edition Milton : CRC Press LLC,c2019 |

Material Type: | Document, Internet resource |

Document Type: | Internet Resource, Computer File |

All Authors / Contributors: |
P Congdon |

ISBN: | 9781498785914 1498785913 9780429113352 0429113358 9780429532900 0429532903 9780429547607 0429547609 |

OCLC Number: | 1120692089 |

Notes: | Description based upon print version of record. |

Description: | 1 online resource (593 p.) |

Contents: | Chapter 1 Bayesian Methods for Complex Data: Estimation and Inference; Chapter 2 Computing Options and Strategies; Chapter 3 Model Fit, Comparison, and Checking; Chapter 4 Borrowing Strength Estimation for Exchangeable Units; Chapter 5 Structured Priors Recognizing Similarity over Time and Space; Chapter 6 Regression Techniques using Hierarchical Priors; Chapter 7 Multilevel Models; Chapter 8 Regression for Causal Effects with Observational Data; Chapter 9 Hierarchical Models for Panel Data; Chapter 10 Multivariate Priors, with a Focus on Factor and Structural Equation Models; Chapter 11 Survival and Event History Models; Chapter 12 Hierarchical Methods for Nonlinear Regression. |

Other Titles: | Applied Bayesian hierarchical methods |

Responsibility: | Peter D. Congdon. |

### Abstract:

An intermediate-level treatment of Bayesian hierarchical models and their applications, this book demonstrates the advantages of a Bayesian approach to data sets involving inferences for collections of related units or variables, and in methods where parameters can be treated as random collections. Through illustrative data analysis and attention to statistical computing, this book facilitates practical implementation of Bayesian hierarchical methods. The new edition is a revision of the book Applied Bayesian Hierarchical Methods. It maintains a focus on applied modelling and data analysis, but now using entirely R-based Bayesian computing options. It has been updated with a new chapter on regression for causal effects, and one on computing options and strategies. This latter chapter is particularly important, due to recent advances in Bayesian computing and estimation, including the development of rjags and rstan. It also features updates throughout with new examples. The examples exploit and illustrate the broader advantages of the R computing environment, while allowing readers to explore alternative likelihood assumptions, regression structures, and assumptions on prior densities. Features: Provides a comprehensive and accessible overview of applied Bayesian hierarchical modelling Includes many real data examples to illustrate topics R code (based on rjags, jagsUI, R2OpenBUGS, and rstan) is integrated into the book, emphasizing implementation Software options and coding principles are introduced in new chapter on computing Programs and data sets available on the book's website

## Reviews

*User-contributed reviews*

Add a review and share your thoughts with other readers.
Be the first.

Add a review and share your thoughts with other readers.
Be the first.

## Tags

Add tags for "Bayesian hierarchical models : with applications using R".
Be the first.