skip to content
Biorefineries and chemical processes : design, integration and sustainability analysis Preview this item
ClosePreview this item
Checking...

Biorefineries and chemical processes : design, integration and sustainability analysis

Author: Jhuma Sadhukhan; Kok Siew Ng; Elias Martinez Hernandez
Publisher: Chichester, West Sussex ; Hoboken, NJ : Wiley, 2014.
Edition/Format:   Print book : EnglishView all editions and formats
Summary:
"This book is for educators, postgraduate and final year undergraduate students in chemical engineering, environmental and biochemical engineering and applied science subjects, as well as researchers and practitioners in industry"--
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Additional Physical Format: Online version:
Sadhukhan, Jhuma.
Biorefineries and chemical processes.
Chichester, West Sussex ; Hoboken, NJ : Wiley, 2014
(DLC) 2013050485
Document Type: Book
All Authors / Contributors: Jhuma Sadhukhan; Kok Siew Ng; Elias Martinez Hernandez
ISBN: 9781119990864 1119990866
OCLC Number: 863032759
Notes: Includes index.
Description: xlviii, 625 pages : color illustrations ; 24 cm
Contents: Preface xiii Acknowledgments xvii About the Authors xxi CompanionWebsite xxiii Nomenclature xxv I INTRODUCTION 1 1 Introduction 3 1.1 Fundamentals of the Biorefinery Concept 3 1.1.1 Biorefinery Principles 3 1.1.2 Biorefinery Types and Development 4 1.2 Biorefinery Features and Nomenclature 5 1.3 Biorefinery Feedstock: Biomass 7 1.3.1 Chemical Nature of Biorefinery Feedstocks 8 1.3.2 Feedstock Characterization 10 1.4 Processes and Platforms 12 1.5 Biorefinery Products 15 1.6 Optimization of Preprocessing and Fractionation for Bio Based Manufacturing 18 1.6.1 Background of Lignin 26 1.7 Electrochemistry Application in Biorefineries 31 1.8 Introduction to Energy and Water Systems 34 1.9 Evaluating Biorefinery Performances 36 1.9.1 Performance Indicators 36 1.9.2 Life Cycle Analysis 38 1.10 Chapters 38 1.11 Summary 38 References 39 II TOOLS 43 2 Economic Analysis 45 2.1 Introduction 45 2.2 General Economic Concepts and Terminology 46 2.2.1 Capital Cost and Battery Limits 46 2.2.2 Cost Index 46 2.2.3 Economies of Scale 47 2.2.4 Operating Cost 48 2.2.5 Cash Flows 49 2.2.6 Time Value of Money 49 2.2.7 Discounted Cash Flow Analysis and Net Present Value 50 2.2.8 Profitability Analysis 52 2.2.9 Learning Effect 53 2.3 Methodology 54 2.3.1 Capital Cost Estimation 54 2.3.2 Profitability Analysis 55 2.4 Cost Estimation and Correlation 55 2.4.1 Capital Cost 55 2.4.2 Operating Cost 58 2.5 Summary 59 2.6 Exercises 60 References 61 3 Heat Integration and Utility System Design 63 3.1 Introduction 63 3.2 Process Integration 64 3.3 Analysis of Heat Exchanger Network Using Pinch Technology 65 3.3.1 Data Extraction 66 3.3.2 Construction of Temperature Enthalpy Profiles 69 3.3.3 Application of the Graphical Approach for Energy Recovery 76 3.4 Utility System 83 3.4.1 Components in Utility System 83 3.5 Conceptual Design of Heat Recovery System for Cogeneration 88 3.5.1 Conventional Approach 88 3.5.2 Heuristic Based Approach 88 3.6 Summary 91 References 91 4 Life Cycle Assessment 93 4.1 Life Cycle Thinking 93 4.2 Policy Context 96 4.3 Life Cycle Assessment (LCA) 96 4.4 LCA: Goal and Scope Definition 100 4.5 LCA: Inventory Analysis 104 4.6 LCA: Impact Assessment 111 4.6.1 Global Warming Potential 114 4.6.2 Land Use 115 4.6.3 Resource Use 119 4.6.4 Ozone Layer Depletion 121 4.6.5 Acidification Potential 123 4.6.6 Photochemical Oxidant Creation Potential 126 4.6.7 Aquatic Ecotoxicity 127 4.6.8 Eutrophication Potential 127 4.6.9 Biodiversity 128 4.7 LCA: Interpretation 128 4.7.1 Stand-Alone LCA 128 4.7.2 Accounting LCA 129 4.7.3 Change Oriented LCA 129 4.7.4 Allocation Method 129 4.8 LCIA Methods 130 4.9 Future R&D Needs 145 References 145 5 Data Uncertainty and Multicriteria Analyses 147 5.1 Data Uncertainty Analysis 147 5.1.1 Dominance Analysis 148 5.1.2 Contribution Analysis 149 5.1.3 Scenario Analysis 151 5.1.4 Sensitivity Analysis 153 5.1.5 Monte Carlo Simulation 154 5.2 Multicriteria Analysis 159 5.2.1 Economic Value and Environmental Impact Analysis of Biorefinery Systems 160 5.2.2 Socioeconomic Analysis 163 5.3 Summary 165 References 165 6 Value Analysis 167 6.1 Value on Processing (VOP) and Cost of Production (COP) of Process Network Streams 168 6.2 Value Analysis Heuristics 172 6.2.1 Discounted Cash Flow Analysis 173 6.3 Stream Economic Profile 175 6.4 Concept of Boundary and Evaluation of Economic Margin of a Process Network 175 6.5 Stream Profitability Analysis 176 6.5.1 Value Analysis to Determine Necessary and Sufficient Condition for Streams to be Profitable or Nonprofitable 181 6.6 Summary 187 References 187 7 Combined Economic Value and Environmental Impact (EVEI) Analysis 189 7.1 Introduction 189 7.2 Equivalency Between Economic and Environmental Impact Concepts 190 7.3 Evaluation of Streams 196 7.4 Environmental Impact Profile 200 7.5 Product Economic Value and Environmental Impact (EVEI) Profile 201 7.6 Summary 204 References 205 8 Optimization 207 8.1 Introduction 207 8.2 Linear Optimization 208 8.2.1 Step 1: Rewriting in Standard LP Format 210 8.2.2 Step 2: Initializing the Simplex Method 211 8.2.3 Step 3: Obtaining an Initial Basic Solution 212 8.2.4 Step 4: Determining Simplex Directions 212 8.2.5 Step 5: Determining the Maximum Step Size by the Minimum Ratio Rule 213 8.2.6 Step 6: Updating the Basic Variables 214 8.3 Nonlinear Optimization 218 8.3.1 Gradient Based Methods 219 8.3.2 Generalized Reduced Gradient (GRG) Algorithm 226 8.4 Mixed Integer Linear or Nonlinear Optimization 239 8.4.1 Branch and Bound Method 240 8.5 Stochastic Method 243 8.5.1 Genetic Algorithm (GA) 244 8.5.2 Non-dominated Sorting Genetic Algorithm (NSGA) Optimization 246 8.5.3 GA in MATLAB 248 8.6 Summary 248 References 248 III PROCESS SYNTHESIS AND DESIGN 251 9 Generic Reactors: Thermochemical Processing of Biomass 253 9.1 Introduction 253 9.2 General Features of Thermochemical Conversion Processes 254 9.3 Combustion 257 9.4 Gasification 258 9.4.1 The Process 258 9.4.2 Types of Gasifier 260 9.4.3 Design Considerations 260 9.5 Pyrolysis 262 9.5.1 What is Bio-Oil? 262 9.5.2 How Is Bio-Oil Obtained from Biomass? 264 9.5.3 How Fast Pyrolysis Works 265 9.6 Summary 270 Exercises 270 References 270 10 Reaction Thermodynamics 271 10.1 Introduction 271 10.2 Fundamentals of Design Calculation 272 10.2.1 Heat of Combustion 272 10.2.2 Higher and Lower Heating Values 276 10.2.3 Adiabatic Flame Temperature 278 10.2.4 Theoretical Air-to-Fuel Ratio 279 10.2.5 Cold Gas Efficiency 280 10.2.6 Hot Gas Efficiency 281 10.2.7 Equivalence Ratio 281 10.2.8 Carbon Conversion 282 10.2.9 Heat of Reaction 282 10.3 Process Design: Synthesis and Modeling 282 10.3.1 Combustion Model 282 10.3.2 Gasification Model 283 10.3.3 Pyrolysis Model 289 10.4 Summary 291 Exercises 291 References 292 11 Reaction and Separation Process Synthesis: Chemical Production from Biomass 295 11.1 Chemicals from Biomass: An Overview 296 11.2 Bioreactor and Kinetics 297 11.2.1 An Example of Lactic Acid Production 299 11.2.2 An Example of Succinic Acid Production 304 11.2.3 Heat Transfer Strategies for Reactors 308 11.2.4 An Example of Ethylene Production 309 11.2.5 An Example of Catalytic Fast Pyrolysis 311 11.3 Controlled Acid Hydrolysis Reactions 318 11.4 Advanced Separation and Reactive Separation 327 11.4.1 Membrane Based Separations 327 11.4.2 Membrane Filtration 330 11.4.3 Electrodialysis 333 11.4.4 Ion Exchange 334 11.4.5 Integrated Processes 338 11.4.6 Reactive Extraction 341 11.4.7 Reactive Distillation 352 11.4.8 Crystallization 354 11.4.9 Precipitation 360 11.5 Guidelines for Integrated Biorefinery Design 360 11.5.1 An Example of Levulinic Acid Production: The Biofine Process 365 11.6 Summary 368 References 370 12 Polymer Processes 373 12.1 Polymer Concepts 374 12.1.1 Polymer Classification 375 12.1.2 Polymer Properties 376 12.1.3 From Petrochemical Based Polymers to Biopolymers 379 12.2 Modified Natural Biopolymers 385 12.2.1 Starch Polymers 385 12.2.2 Cellulose Polymers 389 12.2.3 Natural Fiber and Lignin Composites 389 12.3 Modeling of Polymerization Reaction Kinetics 391 12.3.1 Chain-Growth or Addition Polymerization 392 12.3.2 Step-Growth Polymerization 396 12.3.3 Copolymerization 398 12.4 Reactor Design for Biomass Based Monomers and Biopolymers 400 12.4.1 Plug Flow Reactor (PFR) Design for Reaction in Gaseous Phase 400 12.4.2 Bioreactor Design for Biopolymer Production An Example of Polyhydroxyalkanoates 402 12.4.3 Catalytic Reactor Design 403 12.4.4 Energy Transfer Models of Reactors 412 12.5 Synthesis of Unit Operations Combining Reaction and Separation Functionalities 416 12.5.1 Reactive Distillation Column 416 12.5.2 An Example of a Novel Reactor Arrangement 418 12.6 Integrated Biopolymer Production in Biorefineries 421 12.6.1 Polyesters 421 12.6.2 Polyurethanes 422 12.6.3 Polyamides 422 12.6.4 Polycarbonates 424 12.7 Summary 424 References 424 13 Separation Processes: Carbon Capture 425 13.1 Absorption 426 13.2 Absorption Process Flowsheet Synthesis 429 13.3 The RectisolTM Technology 431 13.3.1 Design and Operating Regions of RectisolTM Process 433 13.3.2 Energy Consumption of a RectisolTM Process 435 13.4 The SelexolTM Technology 446 13.4.1 SelexolTM Process Parametric Analysis 448 13.5 Adsorption Process 457 13.5.1 Kinetic Modeling of SMR Reactions 458 13.5.2 Adsorption Modeling of Carbon Dioxide 460 13.5.3 Sorption Enhanced Reaction (SER) Process Dynamic Modeling Framework 460 13.6 Chemical Looping Combustion 463 13.7 Low Temperature Separation 471 13.8 Summary 472 References 473 IV BIOREFINERY SYSTEMS 475 14 Bio-Oil Refining I: Fischer Tropsch Liquid and Methanol Synthesis 477 14.1 Introduction 477 14.2 Bio-Oil Upgrading 478 14.2.1 Physical Upgrading 478 14.2.2 Chemical Upgrading 478 14.2.3 Biological Upgrading 480 14.3 Distributed and Centralized Bio-Oil Processing Concept 481 14.3.1 The Concept 481 14.3.2 The Economics of Local Distribution of Bio-Oil 482 14.3.3 The Economics of Importing Bio-Oil from Other Countries 483 14.4 Integrated Thermochemical Processing of Bio-Oil into Fuels 483 14.4.1 Synthetic Fuel Production 484 14.4.2 Methanol Production 485 14.5 Modeling, Integration and Analysis of Thermochemical Processes of Bio-Oil 486 14.5.1 Flowsheet Synthesis and Modeling 486 14.5.2 Sensitivity Analysis 488 14.6 Summary 494 References 494 15 Bio-Oil Refining II: Novel Membrane Reactors 497 15.1 Bio-Oil Co-Processing in Crude Oil Refinery 497 15.2 Mixed Ionic Electronic Conducting (MIEC) Membrane for Hydrogen Production and Bio-Oil Hydrotreating and Hydrocracking 499 15.3 Bio-Oil Hydrotreating and Hydrocracking Reaction Mechanisms and a MIEC Membrane Reactor Based Bio-Oil Upgrader Process Flowsheet 502 15.4 A Coursework Problem 510 15.5 Summary 513 References 514 16 Fuel Cells and Other Renewables 515 16.1 Biomass Integrated Gasification Fuel Cell (BGFC) System Modeling for Design, Integration and Analysis 517 16.2 Simulation of Integrated BGFC Flowsheets 520 16.3 Heat Integration of BGFC Flowsheets 528 16.4 Analysis of Processing Chains in BGFC Flowsheets 529 16.5 SOFC Gibbs Free Energy Minimization Modeling 532 16.6 Design of SOFC Based Micro-CHP Systems 536 16.7 Fuel Cell and SOFC Design Parameterization Suitable for Spreadsheet Implementation 537 16.7.1 Mass Balance 539 16.7.2 Electrochemical Descriptions 540 16.7.3 An air Blower Power Consumption 542 16.7.4 Combustor Modeling 543 16.7.5 Energy Balance 543 16.8 Summary 546 References 546 17 Algae Biorefineries 547 17.1 Algae Cultivation 548 17.1.1 Open Pond Cultivation 548 17.1.2 Photobioreactors (PBRs) 556 17.2 Algae Harvesting and Oil Extraction 562 17.2.1 Harvesting 562 17.2.2 Extraction 570 17.3 Algae Biodiesel Production 570 17.3.1 Biodiesel Process 570 17.3.2 Heterogeneous Catalysts for Transesterification 572 17.4 Algae Biorefinery Integration 572 17.5 Life Cycle Assessment of Algae Biorefineries 575 17.6 Summary 579 References 579 18 Heterogeneously Catalyzed Reaction Kinetics and Diffusion Modeling: Example of Biodiesel 581 18.1 Intrinsic Kinetic Modeling 582 18.1.1 Elementary Reaction Mechanism and Intrinsic Kinetic Modeling of the Biodiesel Production System 582 18.1.2 Solution Strategy for the Rate Equations Resulting from the Elementary Reaction Mechanism 590 18.1.3 Correlation between Concentration and Activity of Species Using the UNIQUAC Contribution Method 591 18.1.4 An Example of EXCEL Spreadsheet Based UNIQUAC Calculation for a Biodiesel Production System is Shown in Detail for Implementation in Online Resource Material, Chapter 18 Additional Exercises and Examples 592 18.1.5 Intrinsic Kinetic Modeling Framework 592 18.2 Diffusion Modeling 595 18.3 Multi-scale Mass Transfer Modeling 598 18.3.1 Dimensionless Physical Parameter Groups 606 18.4 Summary 612 References 612 V ONLINE RESOURCES Web Chapter 1: Waste and Emission Minimization Web Chapter 2: Energy Storage and Control Systems Web Chapter 3: Water Reuse, Footprint and Optimization Analysis Case Study 1: Biomass CHP Plant Design Problem LCA and Cost Analysis Case Study 2: Comparison between Epoxy Resin Productions from Algal or Soya Oil An LCA Based Problem Solving Approach Case Study 3: Waste Water Sludge Based CHP and Agricultural Application System An LCA Based Problem Solving Approach Case Study 4: LCA Approach for Solar Organic Photovoltaic Cells Manufacturing Index 613
Responsibility: Jhuma Sadhukhan, Kok Siew Ng, Elias Martinez Hernandez.

Abstract:

As the range of feedstocks, process technologies and products expand, biorefineries will become increasingly complex manufacturing systems. This book presents process modelling and integration, and  Read more...

Reviews

Editorial reviews

Publisher Synopsis

In conclusion, this book introduces the reader to the rapidly-developing industry of biorefineries, with a multi-disciplinary approach. It is a good resource for undergraduate and post-graduate Read more...

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/863032759> # Biorefineries and chemical processes : design, integration and sustainability analysis
    a schema:Book, schema:CreativeWork ;
   library:oclcnum "863032759" ;
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/enk> ;
   schema:about <http://experiment.worldcat.org/entity/work/data/1745466089#Topic/science_chemistry_general> ; # SCIENCE--Chemistry--General
   schema:about <http://experiment.worldcat.org/entity/work/data/1745466089#Topic/biomass_refining> ; # Biomass--Refining
   schema:about <http://id.worldcat.org/fast/832527> ; # Biomass chemicals industry
   schema:about <http://id.worldcat.org/fast/832550> ; # Biomass energy industries--Environmental aspects
   schema:about <http://experiment.worldcat.org/entity/work/data/1745466089#Topic/biomass_energy_industries_environmental_aspects> ; # Biomass energy industries--Environmental aspects
   schema:about <http://dewey.info/class/662.88/e23/> ;
   schema:about <http://experiment.worldcat.org/entity/work/data/1745466089#Topic/biomass_chemicals_technological_innovations> ; # Biomass chemicals--Technological innovations
   schema:author <http://viaf.org/viaf/311436893> ; # Kok Siew Ng
   schema:author <http://viaf.org/viaf/305934156> ; # Jhuma Sadhukhan
   schema:bookFormat bgn:PrintBook ;
   schema:contributor <http://viaf.org/viaf/305934155> ; # Elias Martinez Hernandez
   schema:datePublished "2014" ;
   schema:description ""This book is for educators, postgraduate and final year undergraduate students in chemical engineering, environmental and biochemical engineering and applied science subjects, as well as researchers and practitioners in industry"--"@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/1745466089> ;
   schema:inLanguage "en" ;
   schema:isSimilarTo <http://worldcat.org/entity/work/data/1745466089#CreativeWork/biorefineries_and_chemical_processes> ;
   schema:name "Biorefineries and chemical processes : design, integration and sustainability analysis"@en ;
   schema:productID "863032759" ;
   schema:workExample <http://worldcat.org/isbn/9781119990864> ;
   umbel:isLike <http://bnb.data.bl.uk/id/resource/GBB4B6348> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/863032759> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/1745466089#Topic/biomass_chemicals_technological_innovations> # Biomass chemicals--Technological innovations
    a schema:Intangible ;
   schema:hasPart <http://id.loc.gov/authorities/subjects/sh85014230> ;
   schema:name "Biomass chemicals--Technological innovations"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/1745466089#Topic/biomass_energy_industries_environmental_aspects> # Biomass energy industries--Environmental aspects
    a schema:Intangible ;
   schema:hasPart <http://id.loc.gov/authorities/subjects/sh85014234> ;
   schema:name "Biomass energy industries--Environmental aspects"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/1745466089#Topic/science_chemistry_general> # SCIENCE--Chemistry--General
    a schema:Intangible ;
   schema:name "SCIENCE--Chemistry--General"@en ;
    .

<http://id.worldcat.org/fast/832527> # Biomass chemicals industry
    a schema:Intangible ;
   schema:name "Biomass chemicals industry"@en ;
    .

<http://id.worldcat.org/fast/832550> # Biomass energy industries--Environmental aspects
    a schema:Intangible ;
   schema:name "Biomass energy industries--Environmental aspects"@en ;
    .

<http://viaf.org/viaf/305934155> # Elias Martinez Hernandez
    a schema:Person ;
   schema:familyName "Hernandez" ;
   schema:givenName "Elias Martinez" ;
   schema:name "Elias Martinez Hernandez" ;
    .

<http://viaf.org/viaf/305934156> # Jhuma Sadhukhan
    a schema:Person ;
   schema:familyName "Sadhukhan" ;
   schema:givenName "Jhuma" ;
   schema:name "Jhuma Sadhukhan" ;
    .

<http://viaf.org/viaf/311436893> # Kok Siew Ng
    a schema:Person ;
   schema:familyName "Ng" ;
   schema:givenName "Kok Siew" ;
   schema:name "Kok Siew Ng" ;
    .

<http://worldcat.org/entity/work/data/1745466089#CreativeWork/biorefineries_and_chemical_processes>
    a schema:CreativeWork ;
   rdfs:label "Biorefineries and chemical processes." ;
   schema:description "Online version:" ;
   schema:isSimilarTo <http://www.worldcat.org/oclc/863032759> ; # Biorefineries and chemical processes : design, integration and sustainability analysis
    .

<http://worldcat.org/isbn/9781119990864>
    a schema:ProductModel ;
   schema:isbn "1119990866" ;
   schema:isbn "9781119990864" ;
    .

<http://www.worldcat.org/title/-/oclc/863032759>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
   schema:about <http://www.worldcat.org/oclc/863032759> ; # Biorefineries and chemical processes : design, integration and sustainability analysis
   schema:dateModified "2018-11-09" ;
   void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.