skip to content
The Boltzmann equation and its applications Preview this item
ClosePreview this item
Checking...

The Boltzmann equation and its applications

Author: Carlo Cercignani
Publisher: New York Berlin Heidelberg London Paris Tokyo Springer 1988
Series: Applied mathematical sciences, Vol. 67
Edition/Format:   Print book : GermanView all editions and formats
Summary:

Features an exposition of the present status of the theory of the Boltzmann equation and its applications. The Boltzmann equation, an integrodifferential equation established by Boltzmann in 1872 to  Read more...

Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Additional Physical Format: Online-Ausg.
Cercignani, Carlo, 1939-2010
Boltzmann Equation and Its Applications
New York, NY : Springer New York, 1988
Online-Ressource
(DE-101)101496010X
Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: Carlo Cercignani
ISBN: 9783540966371 3540966374 9780387966373 0387966374
OCLC Number: 246686624
Notes: Literaturangaben
Description: XII, 455 S. 42 graph. Darst. 25 cm
Contents: I. Basic Principles of The Kinetic Theory of Gases.- 1. Introduction.- 2. Probability.- 3. Phase space and Liouville's theorem.- 4. Hard spheres and rigid walls. Mean free path.- 5. Scattering of a volume element in phase space.- 6. Time averages, ergodic hypothesis and equilibrium states.- References.- II. The Boltzmann Equation.- 1. The problem of nonequilibrium states.- 2. Equations for the many particle distribution functions for a gas of rigid spheres.- 3. The Boltzmann equation for rigid spheres.- 4. Generalizations.- 5. Details of the collision term.- 6. Elementary properties of the collision operator. Collision invariants.- 7. Solution of the equation Q(f,f) = 0.- 8. Connection between the microscopic description and the macroscopic description of gas dynamics.- 9. Non-cutoff potentials and grazing collisions. Fokker-Planck equation.- 10. Model equations.- References.- III. Gas-Surface Interaction and the H-Theorem.- 1. Boundary conditions and the gas-surface interaction.- 2. Computation of scattering kernels.- 3. Reciprocity.- 4. A remarkable inequality.- 5. Maxwell's boundary conditions. Accommodation coefficients.- 6. Mathematical models for gas-surface interaction.- 7. Physical models for gas-surface interaction.- 8. Scattering of molecular beams.- 9. The H-theorem. Irreversibility.- 10. Equilibrium states and Maxwellian distributions.- References.- IV, Linear Transport.- 1. The linearized collision operator.- 2. The linearized Boltzmann equation.- 3. The linear Boltzmann equation. Neutron transport and radiative transfer.- 4. Uniqueness of the solution for initial and boundary value problems.- 5. Further investigation of the linearized collision term.- 6. The decay to equilibrium and the spectrum of the collision operator.- 7. Steady one-dimensional problems. Transport coefficients.- 8. The general case.- 9. Linearized kinetic models.- 10. The variational principle.- 11. Green's function.- 12. The integral equation approach.- References.- V. Small and Large Mean Free Paths.- 1. The Knudsen number.- 2. The Hilbert expansion.- 3. The Chapman-Enskog expansion.- 4. Criticism of the Chapman-Enskog method.- 5. Initial, boundary and shock layers.- 6. Further remarks on the Chapman-Enskog method and the computation of transport coefficients.- 7. Free molecule flow past a convex body.- 8. Free molecule flow in presence of nonconvex boundaries.- 9. Nearly free-molecule flows.- References.- VI. Analytical Solutions of Models.- 1. The method of elementary solutions.- 2. Splitting of a one-dimensional model equation.- 3. Elementary solutions of the simplest transport equation.- 4. Application of the general method to the Kramers and Milne problems.- 5. Application to the flow between parallel plates and the critical problem of a slab.- 6. Unsteady solutions of kinetic models with constant collision frequency.- 7. Analytical solutions of specific problems.- 8. More general models.- 9. Some special cases.- 10. Unsteady solutions of kinetic models with velocity dependent collision frequency.- 11. Analytic continuation.- 12. Sound propagation in monatomic gases.- 13. Two-dimensional and three-dimensional problems. Flow past solid bodies.- 14. Fluctuations and light scattering.- References.- VII. The Transition Regime.- 1. Introduction.- 2. Moment and discrete ordinate methods.- 3. The variational method.- 4. Monte Carlo methods.- 5. Problems of flow and heat transfer in regions bounded by planes or cylinders.- 6. Shock-wave structure.- 7. External flows.- 8. Expansion of a gas into a vacuum.- References.- VIII. Theorems on the Solutions of the Boltzmann Equation.- 1. Introduction.- 2. The space homogeneous case.- 3. Mollified and other modified versions of the Boltzmann equation.- 4. Nonstandard analysis approach to the Boltzmann equation.- 5. Local existence and validity of the Boltzmann equation.- 6. Global existence near equilibrium.- 7. Perturbations of vacuum.- 8. Homoenergetic solutions.- 9. Boundary value problems. The linearized and weakly nonlinear cases.- 10. Nonlinear boundary value problems.- 11. Concluding remarks.- References.- References.- Author Index.
Series Title: Applied mathematical sciences, Vol. 67
Responsibility: Carlo Cercignani
More information:

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


\n\n

Primary Entity<\/h3>\n
<http:\/\/www.worldcat.org\/oclc\/246686624<\/a>> # The Boltzmann equation and its applications<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:CreativeWork<\/a>, schema:Book<\/a> ;\u00A0\u00A0\u00A0\nlibrary:oclcnum<\/a> \"246686624<\/span>\" ;\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/id.loc.gov\/vocabulary\/countries\/gw<\/a>> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/3768552933#Topic\/maxwell_boltzmannsche_stossgleichung<\/a>> ; # Maxwell-Boltzmannsche Sto\u00DFgleichung<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/3768552933#Topic\/anwendung<\/a>> ; # Anwendung<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/3768552933#Topic\/boltzmann_gleichung<\/a>> ; # Boltzmann-Gleichung<\/span>\n\u00A0\u00A0\u00A0\nschema:author<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/3768552933#Person\/cercignani_carlo_1939_2010<\/a>> ; # Carlo Cercignani<\/span>\n\u00A0\u00A0\u00A0\nschema:bookFormat<\/a> bgn:PrintBook<\/a> ;\u00A0\u00A0\u00A0\nschema:datePublished<\/a> \"1988<\/span>\" ;\u00A0\u00A0\u00A0\nschema:exampleOfWork<\/a> <http:\/\/worldcat.org\/entity\/work\/id\/3768552933<\/a>> ;\u00A0\u00A0\u00A0\nschema:inLanguage<\/a> \"de<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isPartOf<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/3768552933#Series\/applied_mathematical_sciences<\/a>> ; # Applied mathematical sciences<\/span>\n\u00A0\u00A0\u00A0\nschema:isSimilarTo<\/a> <http:\/\/worldcat.org\/entity\/work\/data\/3768552933#CreativeWork\/boltzmann_equation_and_its_applications<\/a>> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"The Boltzmann equation and its applications<\/span>\"@de<\/a> ;\u00A0\u00A0\u00A0\nschema:productID<\/a> \"246686624<\/span>\" ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/d-nb.info\/880234512\/04<\/a>> ;\u00A0\u00A0\u00A0\nschema:workExample<\/a> <http:\/\/worldcat.org\/isbn\/9780387966373<\/a>> ;\u00A0\u00A0\u00A0\nschema:workExample<\/a> <http:\/\/worldcat.org\/isbn\/9783540966371<\/a>> ;\u00A0\u00A0\u00A0\numbel:isLike<\/a> <http:\/\/d-nb.info\/880234512<\/a>> ;\u00A0\u00A0\u00A0\nwdrs:describedby<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/246686624<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Related Entities<\/h3>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/3768552933#Person\/cercignani_carlo_1939_2010<\/a>> # Carlo Cercignani<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:birthDate<\/a> \"1939<\/span>\" ;\u00A0\u00A0\u00A0\nschema:deathDate<\/a> \"2010<\/span>\" ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Cercignani<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Carlo<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Carlo Cercignani<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/3768552933#Series\/applied_mathematical_sciences<\/a>> # Applied mathematical sciences<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:PublicationSeries<\/a> ;\u00A0\u00A0\u00A0\nschema:hasPart<\/a> <http:\/\/www.worldcat.org\/oclc\/246686624<\/a>> ; # The Boltzmann equation and its applications<\/span>\n\u00A0\u00A0\u00A0\nschema:name<\/a> \"Applied mathematical sciences<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/3768552933#Topic\/anwendung<\/a>> # Anwendung<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Anwendung<\/span>\"@de<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/3768552933#Topic\/boltzmann_gleichung<\/a>> # Boltzmann-Gleichung<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Boltzmann-Gleichung<\/span>\"@de<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/3768552933#Topic\/maxwell_boltzmannsche_stossgleichung<\/a>> # Maxwell-Boltzmannsche Sto\u00DFgleichung<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Maxwell-Boltzmannsche Sto\u00DFgleichung<\/span>\"@de<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.loc.gov\/vocabulary\/countries\/gw<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\ndcterms:identifier<\/a> \"gw<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/entity\/work\/data\/3768552933#CreativeWork\/boltzmann_equation_and_its_applications<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:CreativeWork<\/a> ;\u00A0\u00A0\u00A0\nrdfs:label<\/a> \"Boltzmann Equation and Its Applications<\/span>\" ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"Online-Ausg.<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isSimilarTo<\/a> <http:\/\/www.worldcat.org\/oclc\/246686624<\/a>> ; # The Boltzmann equation and its applications<\/span>\n\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/isbn\/9780387966373<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:ProductModel<\/a> ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"0387966374<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"9780387966373<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/isbn\/9783540966371<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:ProductModel<\/a> ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"3540966374<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"9783540966371<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n