Find a copy online
Links to this item
Find a copy in the library
Finding libraries that hold this item...
Details
Genre/Form: | Thèses et écrits académiques |
---|---|
Material Type: | Document, Thesis/dissertation, Internet resource |
Document Type: | Internet Resource, Computer File |
All Authors / Contributors: |
Pablo Lessa; François Ledrappier; Mathilde Martinez; Université Pierre et Marie Curie (Paris / 1971-2017).; Universidad de la República (Montevideo). Facultad de Ciencias.; École doctorale Sciences mathématiques de Paris centre (Paris / 2000-....). |
OCLC Number: | 879641355 |
Notes: | Thèse soutenue en co-tutelle. Titre provenant de l'écran-titre. |
Description: | 1 online resource |
Responsibility: | Pablo Lessa ; sous la direction de François Ledrappier et de Mathilde Martinez. |
Abstract:
We introduce the concept of a stationary random manifold with the objective of treating in a unified way results about manifolds with transitive isometry group, manifolds with a compact quotient, and generic leaves of compact foliations. We prove inequalities relating linear drift and entropy of Brownian motion with the volume growth of such manifolds, generalizing previous work by Avez, Kaimanovich, and Ledrappier among others. In the second part we prove that the leaf function of a compact foliation is semicontinuous, obtaining as corollaries Reeb's local stability theorem, part of Epstein's the local structure theorem for foliations by compact leaves, and a continuity theorem of Álvarez and Candel.
Reviews


Tags
Similar Items
Related Subjects:(6)
- Mouvement brownien.
- Théorie ergodique.
- Variétés aléatoires
- Entropie
- Propriété de Liouville
- Feuilletages