skip to content
Category theory for programmers Preview this item
ClosePreview this item
Checking...

Category theory for programmers

Author: Bartosz Milewski
Publisher: [Place of publication not identified] : [Bartosz Milewski], 2018.
Edition/Format:   Print book : English : Version v.1.0.0-0-g41e0fc3 October 21, 2018View all editions and formats
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Book
All Authors / Contributors: Bartosz Milewski
ISBN: 9781518403507 1518403506
OCLC Number: 1097571179
Notes: "This book was compiled by Igal Tabachnik, by converting the original text by Bartosz Milewski into LaTeX, by first scraping the original WordPress blog posts using Mercury Web Parser to get clean HTML content, modifying and tweaking with Beautiful Soup, finally, converting to LaTeX with Pandoc"--Page 378.
Description: xiii, 379 pages : illustrations ; 24 cm
Contents: Preface --
Part 1 --
1. Category: The Essence of Composition --
2. Types and Functions --
3. Categories Great and Small --
4. Kleisli Categories --
5. Products and Coproducts --
6. Simple Algebraic Data Types --
7. Functors --
8. Functoriality --
9. Function Types --
10. Natural Transformations. Part 2 --
11. Declarative Programming --
12. Limits and Colimits --
13. Free Monoids --
14. Representable Functors --
15. The Yoneda Lemma --
16. Yoneda Embedding. Part 3 --
17. It's All About Morphisms --
18. Adjunctions --
19. Free/Forgetful Adjunctions --
20. Monads: Programmer's Definition --
21. Monads and Effects --
22. Monads Categorically --
23. Comonads --
24. F-Algebras --
25. Algebras for Monads --
26. Ends and Coends --
27. Kan Extensions --
28. Enriched Categories --
29. Topoi --
30. Lawvere Theories --
31. Monads, Monoids, and Categories --
Appendices --
Index --
Colophon --
Copyleft notice.
Responsibility: by Bartosz Milewski ; compiled and edited by Igal Tabachnik.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/1097571179> # Category theory for programmers
    a schema:CreativeWork, schema:Book ;
    library:oclcnum "1097571179" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/xxu> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/4737124789#Topic/computer_programming_mathematics> ; # Computer programming--Mathematics
    schema:about <http://experiment.worldcat.org/entity/work/data/4737124789#Topic/categories_mathematics> ; # Categories (Mathematics)
    schema:about <http://experiment.worldcat.org/entity/work/data/4737124789#Topic/haskell_computer_program_language> ; # Haskell (Computer program language)
    schema:about <http://experiment.worldcat.org/entity/work/data/4737124789#Topic/c++_computer_program_language> ; # C++ (Computer program language)
    schema:author <http://experiment.worldcat.org/entity/work/data/4737124789#Person/milewski_bartosz> ; # Bartosz Milewski
    schema:bookEdition "Version v.1.0.0-0-g41e0fc3 October 21, 2018" ;
    schema:bookFormat bgn:PrintBook ;
    schema:datePublished "2018" ;
    schema:description "Part 2 -- 11. Declarative Programming -- 12. Limits and Colimits -- 13. Free Monoids -- 14. Representable Functors -- 15. The Yoneda Lemma -- 16. Yoneda Embedding."@en ;
    schema:description "Preface -- Part 1 -- 1. Category: The Essence of Composition -- 2. Types and Functions -- 3. Categories Great and Small -- 4. Kleisli Categories -- 5. Products and Coproducts -- 6. Simple Algebraic Data Types -- 7. Functors -- 8. Functoriality -- 9. Function Types -- 10. Natural Transformations."@en ;
    schema:description "Part 3 -- 17. It's All About Morphisms -- 18. Adjunctions -- 19. Free/Forgetful Adjunctions -- 20. Monads: Programmer's Definition -- 21. Monads and Effects -- 22. Monads Categorically -- 23. Comonads -- 24. F-Algebras -- 25. Algebras for Monads -- 26. Ends and Coends -- 27. Kan Extensions -- 28. Enriched Categories -- 29. Topoi -- 30. Lawvere Theories -- 31. Monads, Monoids, and Categories -- Appendices -- Index -- Colophon -- Copyleft notice."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/4737124789> ;
    schema:inLanguage "en" ;
    schema:name "Category theory for programmers"@en ;
    schema:productID "1097571179" ;
    schema:workExample <http://worldcat.org/isbn/9781518403507> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/1097571179> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/4737124789#Person/milewski_bartosz> # Bartosz Milewski
    a schema:Person ;
    schema:familyName "Milewski" ;
    schema:givenName "Bartosz" ;
    schema:name "Bartosz Milewski" ;
    .

<http://experiment.worldcat.org/entity/work/data/4737124789#Topic/c++_computer_program_language> # C++ (Computer program language)
    a schema:Intangible ;
    schema:name "C++ (Computer program language)"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/4737124789#Topic/categories_mathematics> # Categories (Mathematics)
    a schema:Intangible ;
    schema:name "Categories (Mathematics)"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/4737124789#Topic/computer_programming_mathematics> # Computer programming--Mathematics
    a schema:Intangible ;
    schema:name "Computer programming--Mathematics"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/4737124789#Topic/haskell_computer_program_language> # Haskell (Computer program language)
    a schema:Intangible ;
    schema:name "Haskell (Computer program language)"@en ;
    .

<http://worldcat.org/isbn/9781518403507>
    a schema:ProductModel ;
    schema:isbn "1518403506" ;
    schema:isbn "9781518403507" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.