skip to content
Compositional data analysis in practice Preview this item
ClosePreview this item
Checking...

Compositional data analysis in practice

Author: Michael J Greenacre
Publisher: Boca Raton, Florida : CRC Press, [2018]
Series: Chapman & Hall/CRC interdisciplinary statistics
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
Compositional Data Analysis in Practice is a user-oriented practical guide to the analysis of data with the property of a constant sum, for example percentages adding up to 100%. Compositional data can give misleading results if regular statistical methods are applied, and are best analysed by first transforming them to logarithms of ratios. This book explains how this transformation affects the analysis, results  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Greenacre, Michael J.
Compositional data analysis in practice.
Boca Raton, Florida : CRC Press, [2018]
(DLC) 2018017447
(OCoLC)1033546829
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Michael J Greenacre
ISBN: 9780429849015 042984901X 9780429849022 0429849028
OCLC Number: 1046068064
Description: 1 online resource.
Contents: Cover; Half Title; Title Page; Copyright Page; Dedication; Table of Contents; Preface; 1 What are compositional data, and why are they special?; 1.1 Examples of compositional data; 1.2 Why are compositional data different from other types of data?; 1.3 Basic terminology and notation in compositional data analysis; 1.4 Basic principles of compositional data analysis; 1.5 Ratios and logratios; 2 Geometry and visualization of compositional data; 2.1 Simple graphics; 2.2 Geometry in a simplex; 2.3 Moving out of the simplex; 2.4 Distances between points in logratio space. 3 Logratio transformations3.1 Additive logratio transformations; 3.2 Centred logratio transformations; 3.3 Logratios incorporating amalgamations; 3.4 Isometric logratio transformations; 3.5 Comparison of logratios in practice; 3.6 Practical interpretation of logratios; 4 Properties and distributions of logratios; 4.1 Lognormal distribution; 4.2 Logit function; 4.3 Additive logistic normal distribution; 4.4 Logratio variances and covariances; 4.5 Testing for multivariate normality; 4.6 When logratios are not normal; 5 Regression models involving compositional data. 5.1 Visualizing ratios as a graph5.2 Using simple logratios as predictors; 5.3 Compositions as responses --
total logratio variance; 5.4 Redundancy analysis; 6 Dimension reduction using logratio analysis; 6.1 Weighted principal component analysis; 6.2 Logratio analysis; 6.3 Different biplot scaling options; 6.4 Constrained compositional biplots; 7 Clustering of compositional data; 7.1 Logratio distances between rows and between columns; 7.2 Clustering based on logratio distances; 7.3 Weighted Ward clustering; 7.4 Isometric logratio versus amalgamation balances. 8 Problem of zeros, with some solutions8.1 Zero replacement; 8.2 Sensitivity to zero replacement; 8.3 Subcompositional incoherence; 8.4 Correspondence analysis alternative; 9 Simplifying the task: variable selection; 9.1 Explaining total logratio variance; 9.2 Stepwise selection of logratios; 9.3 Parsimonious variable selection; 9.4 Amalgamation logratios as variables for selection; 9.5 Signal and noise in compositional data; 10 Case study: Fatty acids of marine amphipods; 10.1 Introduction; 10.2 Material and methods; 10.3 Results; 10.4 Discussion and conclusion. A Appendix: Theory of compositional data analysisA. 1 Basic notation; A.2 Ratios and logratios; A.3 Logratio distance; A.4 Logratio variance; A.5 Logratio analysis (LRA); A.6 Principal component analysis (PCA); A.7 Procrustes analysis; A.8 Constrained logratio analysis and redundancy analysis; A.9 Permutation tests; A.10 Weighted Ward clustering; B Appendix: Bibliography of compositional data analysis; B.1 Books; B.2 Articles; B.3 Web resources; C Appendix: Computation of compositional data analysis; C.1 Simple graphics for compositional data; C.2 Logratio transformations.
Series Title: Chapman & Hall/CRC interdisciplinary statistics
Responsibility: Michael Greenacre.

Abstract:

Compositional Data Analysis in Practice is a user-oriented practical guide to the analysis of data with the property of a constant sum, for example percentages adding up to 100%. Compositional data can give misleading results if regular statistical methods are applied, and are best analysed by first transforming them to logarithms of ratios. This book explains how this transformation affects the analysis, results and interpretation of this very special type of data. All aspects of compositional data analysis are considered: visualization, modelling, dimension-reduction, clustering and variable selection, with many examples in the fields of food science, archaeology, sociology and biochemistry, and a final chapter containing a complete case study using fatty acid compositions in ecology. The applicability of these methods extends to other fields such as linguistics, geochemistry, marketing, economics and finance.R SoftwareThe R package easyCODA, which accompanies this book, can be downloaded from R-Forge as follows: install.packages and will be available on CRAN soon. Notice that the R packages ca and vegan also have to be installed (from CRAN in the usual way).

Reviews

Editorial reviews

Publisher Synopsis

"This book provides a essential reference as a practical way to evaluate and interpret compositional data across a broad spectrum of disciplines in the life and natural sciences for both academia and Read more...

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/1046068064> # Compositional data analysis in practice
    a schema:MediaObject, schema:CreativeWork, schema:Book ;
    library:oclcnum "1046068064" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/flu> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/5069564654#Topic/quantitative_research> ; # Quantitative research
    schema:about <http://experiment.worldcat.org/entity/work/data/5069564654#Topic/mathematics_probability_&_statistics_general> ; # MATHEMATICS / Probability & Statistics / General
    schema:about <http://experiment.worldcat.org/entity/work/data/5069564654#Topic/principal_components_analysis> ; # Principal components analysis
    schema:about <http://dewey.info/class/001.42/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/5069564654#Topic/electronic_data_processing> ; # Electronic data processing
    schema:author <http://experiment.worldcat.org/entity/work/data/5069564654#Person/greenacre_michael_j> ; # Michael J. Greenacre
    schema:bookFormat schema:EBook ;
    schema:datePublished "2018" ;
    schema:description "Cover; Half Title; Title Page; Copyright Page; Dedication; Table of Contents; Preface; 1 What are compositional data, and why are they special?; 1.1 Examples of compositional data; 1.2 Why are compositional data different from other types of data?; 1.3 Basic terminology and notation in compositional data analysis; 1.4 Basic principles of compositional data analysis; 1.5 Ratios and logratios; 2 Geometry and visualization of compositional data; 2.1 Simple graphics; 2.2 Geometry in a simplex; 2.3 Moving out of the simplex; 2.4 Distances between points in logratio space."@en ;
    schema:description "Compositional Data Analysis in Practice is a user-oriented practical guide to the analysis of data with the property of a constant sum, for example percentages adding up to 100%. Compositional data can give misleading results if regular statistical methods are applied, and are best analysed by first transforming them to logarithms of ratios. This book explains how this transformation affects the analysis, results and interpretation of this very special type of data. All aspects of compositional data analysis are considered: visualization, modelling, dimension-reduction, clustering and variable selection, with many examples in the fields of food science, archaeology, sociology and biochemistry, and a final chapter containing a complete case study using fatty acid compositions in ecology. The applicability of these methods extends to other fields such as linguistics, geochemistry, marketing, economics and finance.R SoftwareThe R package easyCODA, which accompanies this book, can be downloaded from R-Forge as follows: install.packages and will be available on CRAN soon. Notice that the R packages ca and vegan also have to be installed (from CRAN in the usual way)."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/5069564654> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/5069564654#Series/chapman_&_hall_crc_interdisciplinary_statistics> ; # Chapman & Hall/CRC interdisciplinary statistics
    schema:isSimilarTo <http://www.worldcat.org/oclc/1033546829> ;
    schema:name "Compositional data analysis in practice"@en ;
    schema:productID "1046068064" ;
    schema:url <https://www.taylorfrancis.com/books/9780429455537> ;
    schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=5455461> ;
    schema:workExample <http://worldcat.org/isbn/9780429849022> ;
    schema:workExample <http://worldcat.org/isbn/9780429849015> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/1046068064> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/5069564654#Person/greenacre_michael_j> # Michael J. Greenacre
    a schema:Person ;
    schema:familyName "Greenacre" ;
    schema:givenName "Michael J." ;
    schema:name "Michael J. Greenacre" ;
    .

<http://experiment.worldcat.org/entity/work/data/5069564654#Series/chapman_&_hall_crc_interdisciplinary_statistics> # Chapman & Hall/CRC interdisciplinary statistics
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/1046068064> ; # Compositional data analysis in practice
    schema:name "Chapman & Hall/CRC interdisciplinary statistics" ;
    .

<http://experiment.worldcat.org/entity/work/data/5069564654#Topic/electronic_data_processing> # Electronic data processing
    a schema:Intangible ;
    schema:name "Electronic data processing"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5069564654#Topic/mathematics_probability_&_statistics_general> # MATHEMATICS / Probability & Statistics / General
    a schema:Intangible ;
    schema:name "MATHEMATICS / Probability & Statistics / General"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5069564654#Topic/principal_components_analysis> # Principal components analysis
    a schema:Intangible ;
    schema:name "Principal components analysis"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5069564654#Topic/quantitative_research> # Quantitative research
    a schema:Intangible ;
    schema:name "Quantitative research"@en ;
    .

<http://worldcat.org/isbn/9780429849015>
    a schema:ProductModel ;
    schema:isbn "042984901X" ;
    schema:isbn "9780429849015" ;
    .

<http://worldcat.org/isbn/9780429849022>
    a schema:ProductModel ;
    schema:isbn "0429849028" ;
    schema:isbn "9780429849022" ;
    .

<http://www.worldcat.org/oclc/1033546829>
    a schema:CreativeWork ;
    rdfs:label "Compositional data analysis in practice." ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/1046068064> ; # Compositional data analysis in practice
    .

<https://www.taylorfrancis.com/books/9780429455537>
    rdfs:comment "Click here to view." ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.