skip to content
Covid-19 virus
COVID-19 Resources

Reliable information about the coronavirus (COVID-19) is available from the World Health Organization (current situation, international travel). Numerous and frequently-updated resource results are available from this WorldCat.org search. OCLC’s WebJunction has pulled together information and resources to assist library staff as they consider how to handle coronavirus issues in their communities.

Image provided by: CDC/ Alissa Eckert, MS; Dan Higgins, MAM
Crossed products by Hecke pairs Preview this item
ClosePreview this item
Checking...

Crossed products by Hecke pairs

Author: Rui Palma; American Mathematical Society,
Publisher: Providence, RI : American Mathematical Society, [2018] ©2018
Series: Memoirs of the American Mathematical Society, no. 1204.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
The author develops a theory of crossed products by actions of Hecke pairs (G, \Gamma), motivated by applications in non-abelian C^*-duality. His approach gives back the usual crossed product construction whenever G / \Gamma is a group and retains many of the aspects of crossed products by groups. The author starts by laying the ^*-algebraic foundations of these crossed products by Hecke pairs and exploring their  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Palma, Rui, 1985-
Crossed products by Hecke pairs
(DLC) 2018005048
(OCoLC)1016026749
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Rui Palma; American Mathematical Society,
ISBN: 9781470443771 1470443775
OCLC Number: 1028579981
Notes: "March 2018, volume 252, number 1204 (fifth of 6 numbers)."
Keywords: Crossed product, Hecke pair, Hecke algebra, C8-dynamical system, Fell bundle, covariant representation.
Description: 1 online resource (vii, 141 pages) : illustrations
Contents: Chapter 1. Preliminaries --
Chapter 2. Orbit space groupoids and Fell bundles --
Chapter 3. *-Algebraic crossed product by a Hecke pair --
Chapter 4. Direct limits of sectional algebras --
Chapter 5. Reduced C*-crossed products --
Chapter 6. Other completions --
Chapter 7. Stone-Von Neumann Theorem For Hecke Pairs --
Chapter 8. Towards Katayama duality.
Series Title: Memoirs of the American Mathematical Society, no. 1204.
Responsibility: Rui Palma.

Abstract:

Develops a theory of crossed products by actions of Hecke pairs $(G, \Gamma )$, motivated by applications in non-abelian $C^*$-duality. The author's approach gives back the usual crossed product  Read more...

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


\n\n

Primary Entity<\/h3>\n
<http:\/\/www.worldcat.org\/oclc\/1028579981<\/a>> # Crossed products by Hecke pairs<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Book<\/a>, schema:MediaObject<\/a>, schema:CreativeWork<\/a> ;\u00A0\u00A0\u00A0\nlibrary:oclcnum<\/a> \"1028579981<\/span>\" ;\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/id.loc.gov\/vocabulary\/countries\/riu<\/a>> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4679610277#Topic\/group_algebras<\/a>> ; # Group algebras<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/dewey.info\/class\/512.2\/e23\/<\/a>> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4679610277#Topic\/non_abelian_groups<\/a>> ; # Non-Abelian groups<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4679610277#Topic\/crossed_products<\/a>> ; # Crossed products<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4679610277#Topic\/hecke_algebras<\/a>> ; # Hecke algebras<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4679610277#Topic\/c_algebras<\/a>> ; # C*-algebras<\/span>\n\u00A0\u00A0\u00A0\nschema:author<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4679610277#Person\/palma_rui_1985<\/a>> ; # Rui Palma<\/span>\n\u00A0\u00A0\u00A0\nschema:bookFormat<\/a> schema:EBook<\/a> ;\u00A0\u00A0\u00A0\nschema:copyrightYear<\/a> \"2018<\/span>\" ;\u00A0\u00A0\u00A0\nschema:datePublished<\/a> \"2018<\/span>\" ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"\"We develop a theory of crossed products by actions of Hecke pairs (G, \u0393), motivated by applications in non-abelian C\u2217-duality. Our approach gives back the usual crossed product construction whenever G\/\u0393 is a group and retains many of the aspects of crossed products by groups. We start by laying the \u2217-algebraic foundations of these crossed products by Hecke pairs and exploring their representation theory, and then proceed to study their different C\u2217-completions. We establish that our construction coincides with that of Laca, Larsen and Neshveyev (2007) whenever they are both definable and, as an application of our theory, we prove a Stone-von Neumann theorem for Hecke pairs which encompasses the work of an Huef, Kaliszewski and Raeburn (2008).\"--Page v.<\/span>\" ;\u00A0\u00A0\u00A0\nschema:exampleOfWork<\/a> <http:\/\/worldcat.org\/entity\/work\/id\/4679610277<\/a>> ;\u00A0\u00A0\u00A0\nschema:genre<\/a> \"Electronic books<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:inLanguage<\/a> \"en<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isPartOf<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4679610277#Series\/memoirs_of_the_american_mathematical_society<\/a>> ; # Memoirs of the American Mathematical Society ;<\/span>\n\u00A0\u00A0\u00A0\nschema:isPartOf<\/a> <http:\/\/worldcat.org\/issn\/0065-9266<\/a>> ; # Memoirs of the American Mathematical Society,<\/span>\n\u00A0\u00A0\u00A0\nschema:isSimilarTo<\/a> <http:\/\/www.worldcat.org\/oclc\/1016026749<\/a>> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Crossed products by Hecke pairs<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:productID<\/a> \"1028579981<\/span>\" ;\u00A0\u00A0\u00A0\nschema:publisher<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4679610277#Organization\/american_mathematical_society<\/a>> ; # American Mathematical Society,<\/span>\n\u00A0\u00A0\u00A0\nschema:url<\/a> <https:\/\/public.ebookcentral.proquest.com\/choice\/publicfullrecord.aspx?p=5347067<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <https:\/\/doi.org\/10.1090\/memo\/1204<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/www.ams.org\/memo\/1204\/<\/a>> ;\u00A0\u00A0\u00A0\nschema:workExample<\/a> <http:\/\/worldcat.org\/isbn\/9781470443771<\/a>> ;\u00A0\u00A0\u00A0\nwdrs:describedby<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/1028579981<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Related Entities<\/h3>\n
<http:\/\/dewey.info\/class\/512.2\/e23\/<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4679610277#Organization\/american_mathematical_society<\/a>> # American Mathematical Society,<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Organization<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"American Mathematical Society,<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4679610277#Person\/palma_rui_1985<\/a>> # Rui Palma<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:birthDate<\/a> \"1985<\/span>\" ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Palma<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Rui<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Rui Palma<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4679610277#Series\/memoirs_of_the_american_mathematical_society<\/a>> # Memoirs of the American Mathematical Society ;<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:PublicationSeries<\/a> ;\u00A0\u00A0\u00A0\nschema:hasPart<\/a> <http:\/\/www.worldcat.org\/oclc\/1028579981<\/a>> ; # Crossed products by Hecke pairs<\/span>\n\u00A0\u00A0\u00A0\nschema:name<\/a> \"Memoirs of the American Mathematical Society ;<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4679610277#Topic\/c_algebras<\/a>> # C*-algebras<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"C*-algebras<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4679610277#Topic\/crossed_products<\/a>> # Crossed products<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Crossed products<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4679610277#Topic\/group_algebras<\/a>> # Group algebras<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Group algebras<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4679610277#Topic\/hecke_algebras<\/a>> # Hecke algebras<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Hecke algebras<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4679610277#Topic\/non_abelian_groups<\/a>> # Non-Abelian groups<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Non-Abelian groups<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.loc.gov\/vocabulary\/countries\/riu<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\ndcterms:identifier<\/a> \"riu<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/isbn\/9781470443771<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:ProductModel<\/a> ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"1470443775<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"9781470443771<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/issn\/0065-9266<\/a>> # Memoirs of the American Mathematical Society,<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:PublicationSeries<\/a> ;\u00A0\u00A0\u00A0\nschema:hasPart<\/a> <http:\/\/www.worldcat.org\/oclc\/1028579981<\/a>> ; # Crossed products by Hecke pairs<\/span>\n\u00A0\u00A0\u00A0\nschema:issn<\/a> \"0065-9266<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Memoirs of the American Mathematical Society,<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.ams.org\/memo\/1204\/<\/a>>\u00A0\u00A0\u00A0\nrdfs:comment<\/a> \"Click for access to e-book<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/oclc\/1016026749<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:CreativeWork<\/a> ;\u00A0\u00A0\u00A0\nrdfs:label<\/a> \"Crossed products by Hecke pairs<\/span>\" ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"Print version:<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isSimilarTo<\/a> <http:\/\/www.worldcat.org\/oclc\/1028579981<\/a>> ; # Crossed products by Hecke pairs<\/span>\n\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/title\/-\/oclc\/1028579981<\/a>>\u00A0\u00A0\u00A0\u00A0a \ngenont:InformationResource<\/a>, genont:ContentTypeGenericResource<\/a> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/www.worldcat.org\/oclc\/1028579981<\/a>> ; # Crossed products by Hecke pairs<\/span>\n\u00A0\u00A0\u00A0\nschema:dateModified<\/a> \"2019-12-03<\/span>\" ;\u00A0\u00A0\u00A0\nvoid:inDataset<\/a> <http:\/\/purl.oclc.org\/dataset\/WorldCat<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n