skip to content
Cyclotomic fields I and II Preview this item
ClosePreview this item
Checking...

Cyclotomic fields I and II

Author: Serge Lang
Publisher: New York : Springer-Verlag, ©1990.
Series: Graduate texts in mathematics, 121.
Edition/Format:   Print book : English : Combined 2nd edView all editions and formats
Summary:

Iwasawa viewed cyclotomic fields as being analogues for number fields of the constant field extensions of algebraic geometry, and wrote a great sequence of papers investigating towers of cyclotomic  Read more...

Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: Serge Lang
ISBN: 0387966714 9780387966717 3540966714 9783540966715 9781461269724 1461269725
OCLC Number: 17263631
Notes: "With an appendix by Karl Rubin."
"This book is a combined edition of books previously published as Cyclotomic Fields and Cyclotomic Fields II, by Springer-Verlag New York Inc., in 1978 and 1980 respectively. It contains an additional appendix by Karl Rubin."--T.p verso
Description: xvii, 433 pages : illustrations ; 25 cm.
Contents: 1 Character Sums.- 1. Character Sums over Finite Fields.- 2. Stickelberger's Theorem.- 3. Relations in the Ideal Classes.- 4. Jacobi Sums as Hecke Characters.- 5. Gauss Sums over Extension Fields.- 6. Application to the Fermat Curve.- 2 Stickelberger Ideals and Bernoulli Distributions.- 1. The Index of the First Stickelberger Ideal.- 2. Bernoulli Numbers.- 3. Integral Stickelberger Ideals.- 4. General Comments on Indices.- 5. The Index for k Even.- 6. The Index for k Odd.- 7. Twistings and Stickelberger Ideals.- 8. Stickelberger Elements as Distributions.- 9. Universal Distributions.- 10. The Davenport-Hasse Distribution.- Appendix. Distributions.- 3 Complex Analytic Class Number Formulas.- 1. Gauss Sums on Z/mZ.- 2. Primitive L-series.- 3. Decomposition of L-series.- 4. The (+/- 1)-eigenspaces.- 5. Cyclotomic Units.- 6. The Dedekind Determinant.- 7. Bounds for Class Numbers.- 4 The p-adic L-function.- 1. Measures and Power Series.- 2. Operations on Measures and Power Series.- 3. The Mellin Transform and p-adic L-function.- Appendix. The p-adic Logarithm.- 4. The p-adic Regulator.- 5. The Formal Leopoldt Transform.- 6. The p-adic Leopoldt Transform.- 5 Iwasawa Theory and Ideal Class Groups.- 1. The Iwasawa Algebra.- 2. Weierstrass Preparation Theorem.- 3. Modules over ZP[[X]].- 4. Zp-extensions and Ideal Class Groups.- 5. The Maximal p-abelian p-ramified Extension.- 6. The Galois Group as Module over the Iwasawa Algebra.- 6 Kummer Theory over Cyclotomic Zp-extensions.- 1. The Cyclotomic Zp-extension.- 2. The Maximal p-abelian p-ramified Extension of the Cyclotomic Zp-extension.- 3. Cyclotomic Units as a Universal Distribution.- 4. The Iwasawa-Leopoldt Theorem and the Kummer-Vandiver Conjecture.- 7 Iwasawa Theory of Local Units.- 1. The Kummer-Takagi Exponents.- 2. Projective Limit of the Unit Groups.- 3. A Basis for U(x) over A.- 4. The Coates-Wiles Homomorphism.- 5. The Closure of the Cyclotomic Units.- 8 Lubin-Tate Theory.- 1. Lubin-Tate Groups.- 2. Formal p-adic Multiplication.- 3. Changing the Prime.- 4. The Reciprocity Law.- 5. The Kummer Pairing.- 6. The Logarithm.- 7. Application of the Logarithm to the Local Symbol.- 9 Explicit Reciprocity Laws.- 1. Statement of the Reciprocity Laws.- 2. The Logarithmic Derivative.- 3. A Local Pairing with the Logarithmic Derivative.- 4. The Main Lemma for Highly Divisible x and ? = xn.- 5. The Main Theorem for the Symbol ?x, xn?n.- 6. The Main Theorem for Divisible x and ? = unit.- 7. End of the Proof of the Main Theorems.- 10 Measures and Iwasawa Power Series.- 1. Iwasawa Invariants for Measures.- 2. Application to the Bernoulli Distributions.- 3. Class Numbers as Products of Bernoulli Numbers.- Appendix by L. Washington: Probabilities.- 4. Divisibility by l Prime to p: Washington's Theorem.- 11 The Ferrero-Washington Theorems.- 1. Basic Lemma and Applications.- 2. Equidistribution and Normal Families.- 3. An Approximation Lemma.- 4. Proof of the Basic Lemma.- 12 Measures in the Composite Case.- 1. Measures and Power Series in the Composite Case.- 2. The Associated Analytic Function on the Formal Multiplicative Group.- 3. Computation of Lp(1, x) in the Composite Case.- 13 Divisibility of Ideal Class Numbers.- 1. Iwasawa Invariants in Zp-extensions.- 2. CM Fields, Real Subfields, and Rank Inequalities.- 3. The l-primary Part in an Extension of Degree Prime to l.- 4. A Relation between Certain Invariants in a Cyclic Extension.- 5. Examples of Iwasawa.- 6. A Lemma of Kummer.- 14 P-adic Preliminaries.- 1. The p-adic Gamma Function.- 2. The Artin-Hasse Power Series.- 3. Analytic Representation of Roots of Unity.- Appendix: Barsky's Existence Proof for the p-adic Gamma Function.- 15 The Gamma Function and Gauss Sums.- 1. The Basic Spaces.- 2. The Frobenius Endomorphism.- 3. The Dwork Trace Formula and Gauss Sums.- 4. Eigenvalues of the Frobenius Endomorphism and the p-adic Gamma Function.- 5. p-adic Banach Spaces.- 16 Gauss Sums and the Artin-Schreier Curve.- 1. Power Series with Growth Conditions.- 2. The Artin-Schreier Equation.- 3. Washnitzer-Monsky Cohomology.- 4. The Frobenius Endomorphism.- 17 Gauss Sums as Distributions.- 1. The Universal Distribution.- 2. The Gauss Sums as Universal Distributions.- 3. The L-function at s = 0.- 4. The p-adic Partial Zeta Function.- Appendix by Karl Rubin.- The Main Conjecture.- 1. Setting and Notation.- 2. Properties of Kolyvagin's "Euler System".- 3. An Application of the Chebotarev Theorem.- 5. The Main Conjecture.- 6. Tools from Iwasawa Theory.- 7. Proof of Theorem 5.1.- 8. Other Formulations and Consequences of the Main Conjecture.
Series Title: Graduate texts in mathematics, 121.
Responsibility: Serge Lang ; with an appendix by Karl Rubin.
More information:

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


\n\n

Primary Entity<\/h3>\n
<http:\/\/www.worldcat.org\/oclc\/17263631<\/a>> # Cyclotomic fields I and II<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Book<\/a>, schema:CreativeWork<\/a> ;\u00A0\u00A0\u00A0\nlibrary:oclcnum<\/a> \"17263631<\/span>\" ;\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/id.loc.gov\/vocabulary\/countries\/nyu<\/a>> ;\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/dbpedia.org\/resource\/New_York_City<\/a>> ; # New York<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1233919141#Topic\/corps_algebriques<\/a>> ; # Corps alg\u00E9briques<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/dewey.info\/class\/512.3\/e19\/<\/a>> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1233919141#Topic\/algebraic_numbers<\/a>> ; # Algebraic numbers<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1233919141#Topic\/31_14_number_theory<\/a>> ; # 31.14 number theory<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1233919141#Topic\/algebraic_fields<\/a>> ; # Algebraic fields<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1233919141#Topic\/numeros_algebricos<\/a>> ; # Numeros Algebricos<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1233919141#Topic\/cyclotomie<\/a>> ; # Cyclotomie<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1233919141#Topic\/cyclotomy<\/a>> ; # Cyclotomy<\/span>\n\u00A0\u00A0\u00A0\nschema:bookEdition<\/a> \"Combined 2nd ed.<\/span>\" ;\u00A0\u00A0\u00A0\nschema:bookFormat<\/a> bgn:PrintBook<\/a> ;\u00A0\u00A0\u00A0\nschema:copyrightYear<\/a> \"1990<\/span>\" ;\u00A0\u00A0\u00A0\nschema:creator<\/a> <http:\/\/viaf.org\/viaf\/107030972<\/a>> ; # Serge Lang<\/span>\n\u00A0\u00A0\u00A0\nschema:datePublished<\/a> \"1990<\/span>\" ;\u00A0\u00A0\u00A0\nschema:exampleOfWork<\/a> <http:\/\/worldcat.org\/entity\/work\/id\/1233919141<\/a>> ;\u00A0\u00A0\u00A0\nschema:inLanguage<\/a> \"en<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isPartOf<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1233919141#Series\/graduate_texts_in_mathematics<\/a>> ; # Graduate texts in mathematics ;<\/span>\n\u00A0\u00A0\u00A0\nschema:name<\/a> \"Cyclotomic fields I and II<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:productID<\/a> \"17263631<\/span>\" ;\u00A0\u00A0\u00A0\nschema:publication<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/17263631#PublicationEvent\/new_york_springer_verlag_1990<\/a>> ;\u00A0\u00A0\u00A0\nschema:publisher<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1233919141#Agent\/springer_verlag<\/a>> ; # Springer-Verlag<\/span>\n\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/catdir.loc.gov\/catdir\/enhancements\/fy0814\/87035616-t.html<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/swbplus.bsz-bw.de\/bsz019602278cov.htm<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/digitool.hbz-nrw.de:1801\/webclient\/DeliveryManager?pid=1946170&custom_att_2=simple_viewer<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/www.gbv.de\/dms\/bowker\/toc\/9780387966717.pdf<\/a>> ;\u00A0\u00A0\u00A0\nschema:workExample<\/a> <http:\/\/worldcat.org\/isbn\/9783540966715<\/a>> ;\u00A0\u00A0\u00A0\nschema:workExample<\/a> <http:\/\/worldcat.org\/isbn\/9780387966717<\/a>> ;\u00A0\u00A0\u00A0\nschema:workExample<\/a> <http:\/\/worldcat.org\/isbn\/9781461269724<\/a>> ;\u00A0\u00A0\u00A0\numbel:isLike<\/a> <http:\/\/d-nb.info\/900448423<\/a>> ;\u00A0\u00A0\u00A0\nwdrs:describedby<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/17263631<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Related Entities<\/h3>\n
<http:\/\/dbpedia.org\/resource\/New_York_City<\/a>> # New York<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"New York<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/dewey.info\/class\/512.3\/e19\/<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/1233919141#Agent\/springer_verlag<\/a>> # Springer-Verlag<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:Agent<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Springer-Verlag<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/1233919141#Series\/graduate_texts_in_mathematics<\/a>> # Graduate texts in mathematics ;<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:PublicationSeries<\/a> ;\u00A0\u00A0\u00A0\nschema:hasPart<\/a> <http:\/\/www.worldcat.org\/oclc\/17263631<\/a>> ; # Cyclotomic fields I and II<\/span>\n\u00A0\u00A0\u00A0\nschema:name<\/a> \"Graduate texts in mathematics ;<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/1233919141#Topic\/31_14_number_theory<\/a>> # 31.14 number theory<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"31.14 number theory<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/1233919141#Topic\/algebraic_fields<\/a>> # Algebraic fields<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Algebraic fields<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/1233919141#Topic\/algebraic_numbers<\/a>> # Algebraic numbers<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Algebraic numbers<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/1233919141#Topic\/corps_algebriques<\/a>> # Corps alg\u00E9briques<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Corps alg\u00E9briques<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Corps alg\u00E9briques<\/span>\"@fr<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/1233919141#Topic\/cyclotomie<\/a>> # Cyclotomie<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Cyclotomie<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Cyclotomie<\/span>\"@fr<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/1233919141#Topic\/cyclotomy<\/a>> # Cyclotomy<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Cyclotomy<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/1233919141#Topic\/numeros_algebricos<\/a>> # Numeros Algebricos<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Numeros Algebricos<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.loc.gov\/vocabulary\/countries\/nyu<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\ndcterms:identifier<\/a> \"nyu<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/viaf.org\/viaf\/107030972<\/a>> # Serge Lang<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:birthDate<\/a> \"1927<\/span>\" ;\u00A0\u00A0\u00A0\nschema:deathDate<\/a> \"2005<\/span>\" ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Lang<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Serge<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Serge Lang<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/isbn\/9780387966717<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:ProductModel<\/a> ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"0387966714<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"9780387966717<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/isbn\/9781461269724<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:ProductModel<\/a> ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"1461269725<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"9781461269724<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/isbn\/9783540966715<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:ProductModel<\/a> ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"3540966714<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"9783540966715<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/title\/-\/oclc\/17263631<\/a>>\u00A0\u00A0\u00A0\u00A0a \ngenont:InformationResource<\/a>, genont:ContentTypeGenericResource<\/a> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/www.worldcat.org\/oclc\/17263631<\/a>> ; # Cyclotomic fields I and II<\/span>\n\u00A0\u00A0\u00A0\nschema:dateModified<\/a> \"2020-07-28<\/span>\" ;\u00A0\u00A0\u00A0\nvoid:inDataset<\/a> <http:\/\/purl.oclc.org\/dataset\/WorldCat<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n