skip to content
Deep belief nets in C++ and CUDA C : Volume 2, Autoencoding in the complex domain Preview this item
ClosePreview this item
Checking...

Deep belief nets in C++ and CUDA C : Volume 2, Autoencoding in the complex domain

Author: Timothy Masters
Publisher: [Berkeley, CA] : Apress, [2018]
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
Discover the essential building blocks of a common and powerful form of deep belief net: the autoencoder. You'll take this topic beyond current usage by extending it to the complex domain for signal and image processing applications. Deep Belief Nets in C++ and CUDA C: Volume 2 also covers several algorithms for preprocessing time series and image data. These algorithms focus on the creation of complex-domain  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
(OCoLC)1030596016
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Timothy Masters
ISBN: 9781484236468 1484236467
OCLC Number: 1038486081
Notes: Includes index.
Description: 1 online resource
Contents: 0. Introduction --
1. Embedded Class Labels --
2. Signal Preprocessing --
3. Image Preprocessing --
4. Autoencoding --
5. Deep Operating Manual.
Other Titles: Autoencoding in the complex domain
Responsibility: Timothy Masters.

Abstract:

Discover the essential building blocks of a common and powerful form of deep belief net: the autoencoder. You'll take this topic beyond current usage by extending it to the complex domain for signal and image processing applications. Deep Belief Nets in C++ and CUDA C: Volume 2 also covers several algorithms for preprocessing time series and image data. These algorithms focus on the creation of complex-domain predictors that are suitable for input to a complex-domain autoencoder. Finally, you'll learn a method for embedding class information in the input layer of a restricted Boltzmann machine. This facilitates generative display of samples from individual classes rather than the entire data distribution. The ability to see the features that the model has learned for each class separately can be invaluable. At each step this book provides you with intuitive motivation, a summary of the most important equations relevant to the topic, and highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. You will: • Code for deep learning, neural networks, and AI using C++ and CUDA C • Carry out signal preprocessing using simple transformations, Fourier transforms, Morlet wavelets, and more • Use the Fourier Transform for image preprocessing • Implement autoencoding via activation in the complex domain • Work with algorithms for CUDA gradient computation • Use the DEEP operating manual.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/1038486081> # Deep belief nets in C++ and CUDA C : Volume 2, Autoencoding in the complex domain
    a schema:CreativeWork, schema:MediaObject, schema:Book ;
    library:oclcnum "1038486081" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/cau> ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/5086068249#Place/berkeley_ca> ; # Berkeley, CA
    schema:about <http://experiment.worldcat.org/entity/work/data/5086068249#Topic/computers_general> ; # COMPUTERS--General
    schema:about <http://experiment.worldcat.org/entity/work/data/5086068249#Topic/neural_networks_computer_science> ; # Neural networks (Computer science)
    schema:about <http://experiment.worldcat.org/entity/work/data/5086068249#Topic/c++_computer_program_language> ; # C++ (Computer program language)
    schema:about <http://dewey.info/class/006.32/e23/> ;
    schema:alternateName "Autoencoding in the complex domain" ;
    schema:bookFormat schema:EBook ;
    schema:copyrightYear "2018" ;
    schema:creator <http://experiment.worldcat.org/entity/work/data/5086068249#Person/masters_timothy> ; # Timothy Masters
    schema:datePublished "2018" ;
    schema:description "Discover the essential building blocks of a common and powerful form of deep belief net: the autoencoder. You'll take this topic beyond current usage by extending it to the complex domain for signal and image processing applications. Deep Belief Nets in C++ and CUDA C: Volume 2 also covers several algorithms for preprocessing time series and image data. These algorithms focus on the creation of complex-domain predictors that are suitable for input to a complex-domain autoencoder. Finally, you'll learn a method for embedding class information in the input layer of a restricted Boltzmann machine. This facilitates generative display of samples from individual classes rather than the entire data distribution. The ability to see the features that the model has learned for each class separately can be invaluable. At each step this book provides you with intuitive motivation, a summary of the most important equations relevant to the topic, and highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. You will: • Code for deep learning, neural networks, and AI using C++ and CUDA C • Carry out signal preprocessing using simple transformations, Fourier transforms, Morlet wavelets, and more • Use the Fourier Transform for image preprocessing • Implement autoencoding via activation in the complex domain • Work with algorithms for CUDA gradient computation • Use the DEEP operating manual."@en ;
    schema:description "0. Introduction -- 1. Embedded Class Labels -- 2. Signal Preprocessing -- 3. Image Preprocessing -- 4. Autoencoding -- 5. Deep Operating Manual."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/5086068249> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/1030596016> ;
    schema:name "Deep belief nets in C++ and CUDA C : Volume 2, Autoencoding in the complex domain"@en ;
    schema:productID "1038486081" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/1038486081#PublicationEvent/berkeley_ca_apress_2018> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/5086068249#Agent/apress> ; # Apress
    schema:url <https://doi.org/10.1007/978-1-4842-3646-8> ;
    schema:url <https://link.springer.com/book/10.1007/978-1-4842-3646-8> ;
    schema:url <https://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=5406338> ;
    schema:url <https://proquest.safaribooksonline.com/9781484236468> ;
    schema:url <http://proquestcombo.safaribooksonline.com/9781484236468> ;
    schema:url <https://www.safaribooksonline.com/library/view//9781484236468/?ar> ;
    schema:url <http://ezsecureaccess.balamand.edu.lb/login?url=https://doi.org/10.1007/978-1-4842-3646-8> ;
    schema:url <http://ezproxy.library.yorku.ca/sso/skillport?context=142614> ;
    schema:url <https://www.books24x7.com/marc.asp?bookid=142614> ;
    schema:url <https://link.springer.com/book/10.1007/978-1-4842-3645-1> ;
    schema:url <http://dx.doi.org/10.1007/978-1-4842-3646-8> ;
    schema:url <http://proquest.tech.safaribooksonline.de/9781484236468> ;
    schema:url <https://www.safaribooksonline.com/complete/auth0oauth2/&state=/library/view//9781484236468/?ar> ;
    schema:url <https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1822674> ;
    schema:workExample <http://dx.doi.org/10.1007/978-1-4842-3646-8> ;
    schema:workExample <http://worldcat.org/isbn/9781484236468> ;
    umbel:isLike <http://bnb.data.bl.uk/id/resource/GBB921651> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/1038486081> ;
    .


Related Entities

<http://dx.doi.org/10.1007/978-1-4842-3646-8>
    a schema:IndividualProduct ;
    rdfs:comment "Available from SpringerLink. Online version available for university members only. This requires an institutional login off-campus." ;
    .

<http://experiment.worldcat.org/entity/work/data/5086068249#Person/masters_timothy> # Timothy Masters
    a schema:Person ;
    schema:familyName "Masters" ;
    schema:givenName "Timothy" ;
    schema:name "Timothy Masters" ;
    .

<http://experiment.worldcat.org/entity/work/data/5086068249#Topic/c++_computer_program_language> # C++ (Computer program language)
    a schema:Intangible ;
    schema:name "C++ (Computer program language)"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5086068249#Topic/computers_general> # COMPUTERS--General
    a schema:Intangible ;
    schema:name "COMPUTERS--General"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5086068249#Topic/neural_networks_computer_science> # Neural networks (Computer science)
    a schema:Intangible ;
    schema:name "Neural networks (Computer science)"@en ;
    .

<http://proquest.tech.safaribooksonline.de/9781484236468>
    rdfs:comment "URL des Erstveröffentlichers" ;
    .

<http://worldcat.org/isbn/9781484236468>
    a schema:ProductModel ;
    schema:isbn "1484236467" ;
    schema:isbn "9781484236468" ;
    .

<http://www.worldcat.org/oclc/1030596016>
    a schema:CreativeWork ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/1038486081> ; # Deep belief nets in C++ and CUDA C : Volume 2, Autoencoding in the complex domain
    .

<http://www.worldcat.org/title/-/oclc/1038486081>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
    schema:about <http://www.worldcat.org/oclc/1038486081> ; # Deep belief nets in C++ and CUDA C : Volume 2, Autoencoding in the complex domain
    schema:dateModified "2019-10-13" ;
    void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.