skip to content
Covid-19 virus
COVID-19 Resources

Reliable information about the coronavirus (COVID-19) is available from the World Health Organization (current situation, international travel). Numerous and frequently-updated resource results are available from this WorldCat.org search. OCLC’s WebJunction has pulled together information and resources to assist library staff as they consider how to handle coronavirus issues in their communities.

Image provided by: CDC/ Alissa Eckert, MS; Dan Higgins, MAM
Deep learning for computer architects Preview this item
ClosePreview this item
Checking...

Deep learning for computer architects

Author: Brandon Reagen; Robert Adolf; Paul Whatmough; Gu-Yeon Wei; David Brooks
Publisher: San Rafael, California : Morgan & Claypool, 2017.
Series: Synthesis lectures on computer architecture 1935-3243 ; # 41
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
2. Foundations of deep learning -- 2.1 Neural networks -- 2.1.1 Biological neural networks -- 2.1.2 Artificial neural networks -- 2.1.3 Deep neural networks -- 2.2 Learning -- 2.2.1 Types of learning -- 2.2.2 How deep neural networks learn.
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Brandon Reagen; Robert Adolf; Paul Whatmough; Gu-Yeon Wei; David Brooks
ISBN: 9781627059855 1627059857
OCLC Number: 1006739526
Description: Online-Ressource (1 PDF (xiv, 109 pages)) : illustrations.
Series Title: Synthesis lectures on computer architecture 1935-3243 ; # 41
Responsibility: Brandon Reagen, Robert Adolf, Paul Whatmough, Gu-Yeon Wei, David Brooks.

Abstract:

2. Foundations of deep learning -- 2.1 Neural networks -- 2.1.1 Biological neural networks -- 2.1.2 Artificial neural networks -- 2.1.3 Deep neural networks -- 2.2 Learning -- 2.2.1 Types of learning -- 2.2.2 How deep neural networks learn.

3. Methods and models -- 3.1 An overview of advanced neural network methods -- 3.1.1 Model architectures -- 3.1.2 Specialized layers -- 3.2 Reference workloads for modern deep learning -- 3.2.1 Criteria for a deep learning workload suite -- 3.2.2 The fathom workloads -- 3.3 Computational intuition behind deep learning -- 3.3.1 Measurement and analysis in a deep learning framework -- 3.3.2 Operation type profiling -- 3.3.3 Performance similarity -- 3.3.4 Training and inference -- 3.3.5 Parallelism and operation balance.

4. Neural network accelerator optimization: a case study -- 4.1 Neural networks and the simplicity wall -- 4.1.1 Beyond the wall: bounding unsafe optimizations -- 4.2 Minerva: a three-pronged approach -- 4.3 Establishing a baseline: safe optimizations -- 4.3.1 Training space exploration -- 4.3.2 Accelerator design space -- 4.4 Low-power neural network accelerators: unsafe optimizations -- 4.4.1 Data type quantization -- 4.4.2 Selective operation pruning -- 4.4.3 SRAM fault mitigation -- 4.5 Discussion -- 4.6 Looking forward.

5. A literature survey and review -- 5.1 Introduction -- 5.2 Taxonomy -- 5.3 Algorithms -- 5.3.1 Data types -- 5.3.2 Model sparsity -- 5.4 Architecture -- 5.4.1 Model sparsity -- 5.4.2 Model support -- 5.4.3 Data movement -- 5.5 Circuits -- 5.5.1 Data movement -- 5.5.2 Fault tolerance.

6. Conclusion -- Bibliography -- Authors' biographies.

Machine learning, and specifically deep learning, has been hugely disruptive in many fields of computer science. The success of deep learning techniques in solving notoriously difficult classification and regression problems has resulted in their rapid adoption in solving real-world problems. The emergence of deep learning is widely attributed to a virtuous cycle whereby fundamental advancements in training deeper models were enabled by the availability of massive datasets and high-performance computer hardware. This text serves as a primer for computer architects in a new and rapidly evolving field. We review how machine learning has evolved since its inception in the 1960s and track the key developments leading up to the emergence of the powerful deep learning techniques that emerged in the last decade. Next we review representative workloads, including the most commonly used datasets and seminal networks across a variety of domains. In addition to discussing the workloads themselves, we also detail the most popular deep learning tools and show how aspiring practitioners can use the tools with the workloads to characterize and optimize DNNs. The remainder of the book is dedicated to the design and optimization of hardware and architectures for machine learning. As high-performance hardware was so instrumental in the success of machine learning becoming a practical solution, this chapter recounts a variety of optimizations proposed recently to further improve future designs. Finally, we present a review of recent research published in the area as well as a taxonomy to help readers understand how various contributions fall in context.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


\n\n

Primary Entity<\/h3>\n
<http:\/\/www.worldcat.org\/oclc\/1006739526<\/a>> # Deep learning for computer architects<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:CreativeWork<\/a>, schema:Book<\/a>, schema:MediaObject<\/a> ;\u00A0\u00A0\u00A0\nlibrary:oclcnum<\/a> \"1006739526<\/span>\" ;\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/id.loc.gov\/vocabulary\/countries\/cau<\/a>> ;\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4479792136#Place\/san_rafael_california<\/a>> ; # San Rafael, California<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4479792136#Topic\/machine_learning<\/a>> ; # Machine learning<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/dewey.info\/class\/006.31\/<\/a>> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4479792136#Topic\/neural_networks_computer_science<\/a>> ; # Neural networks (Computer science)<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4479792136#Topic\/computer_architecture<\/a>> ; # Computer architecture<\/span>\n\u00A0\u00A0\u00A0\nschema:bookFormat<\/a> schema:EBook<\/a> ;\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4479792136#Person\/adolf_robert<\/a>> ; # Robert Adolf<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4479792136#Person\/brooks_david_1975<\/a>> ; # David Brooks<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4479792136#Person\/wei_gu_yeon<\/a>> ; # Gu-Yeon Wei<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4479792136#Person\/whatmough_paul<\/a>> ; # Paul Whatmough<\/span>\n\u00A0\u00A0\u00A0\nschema:creator<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4479792136#Person\/reagen_brandon<\/a>> ; # Brandon Reagen<\/span>\n\u00A0\u00A0\u00A0\nschema:datePublished<\/a> \"2017<\/span>\" ;\u00A0\u00A0\u00A0\nschema:exampleOfWork<\/a> <http:\/\/worldcat.org\/entity\/work\/id\/4479792136<\/a>> ;\u00A0\u00A0\u00A0\nschema:genre<\/a> \"Electronic books<\/span>\" ;\u00A0\u00A0\u00A0\nschema:inLanguage<\/a> \"en<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isPartOf<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4479792136#Series\/synthesis_lectures_on_computer_architecture_1935_3243__41<\/a>> ; # Synthesis lectures on computer architecture 1935-3243 ; # 41<\/span>\n\u00A0\u00A0\u00A0\nschema:name<\/a> \"Deep learning for computer architects<\/span>\" ;\u00A0\u00A0\u00A0\nschema:productID<\/a> \"1006739526<\/span>\" ;\u00A0\u00A0\u00A0\nschema:publication<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/1006739526#PublicationEvent\/san_rafael_california_morgan_&_claypool_2017<\/a>> ;\u00A0\u00A0\u00A0\nschema:publisher<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4479792136#Agent\/morgan_&_claypool<\/a>> ; # Morgan & Claypool<\/span>\n\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/ieeexplore.ieee.org\/servlet\/opac?bknumber=8023044<\/a>> ;\u00A0\u00A0\u00A0\nschema:workExample<\/a> <http:\/\/worldcat.org\/isbn\/9781627059855<\/a>> ;\u00A0\u00A0\u00A0\nschema:workExample<\/a> <http:\/\/dx.doi.org\/10.2200\/S00783ED1V01Y201706CAC041<\/a>> ;\u00A0\u00A0\u00A0\nwdrs:describedby<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/1006739526<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Related Entities<\/h3>\n
<http:\/\/dewey.info\/class\/006.31\/<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/dx.doi.org\/10.2200\/S00783ED1V01Y201706CAC041<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:IndividualProduct<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4479792136#Agent\/morgan_&_claypool<\/a>> # Morgan & Claypool<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:Agent<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Morgan & Claypool<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4479792136#Person\/adolf_robert<\/a>> # Robert Adolf<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Adolf<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Robert<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Robert Adolf<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4479792136#Person\/brooks_david_1975<\/a>> # David Brooks<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:birthDate<\/a> \"1975<\/span>\" ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Brooks<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"David<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"David Brooks<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4479792136#Person\/reagen_brandon<\/a>> # Brandon Reagen<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Reagen<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Brandon<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Brandon Reagen<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4479792136#Person\/wei_gu_yeon<\/a>> # Gu-Yeon Wei<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Wei<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Gu-Yeon<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Gu-Yeon Wei<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4479792136#Person\/whatmough_paul<\/a>> # Paul Whatmough<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Whatmough<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Paul<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Paul Whatmough<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4479792136#Place\/san_rafael_california<\/a>> # San Rafael, California<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"San Rafael, California<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4479792136#Series\/synthesis_lectures_on_computer_architecture_1935_3243__41<\/a>> # Synthesis lectures on computer architecture 1935-3243 ; # 41<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:PublicationSeries<\/a> ;\u00A0\u00A0\u00A0\nschema:hasPart<\/a> <http:\/\/www.worldcat.org\/oclc\/1006739526<\/a>> ; # Deep learning for computer architects<\/span>\n\u00A0\u00A0\u00A0\nschema:name<\/a> \"Synthesis lectures on computer architecture 1935-3243 ; # 41<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4479792136#Topic\/computer_architecture<\/a>> # Computer architecture<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Computer architecture<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4479792136#Topic\/machine_learning<\/a>> # Machine learning<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Machine learning<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/4479792136#Topic\/neural_networks_computer_science<\/a>> # Neural networks (Computer science)<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Neural networks (Computer science)<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.loc.gov\/vocabulary\/countries\/cau<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\ndcterms:identifier<\/a> \"cau<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/isbn\/9781627059855<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:ProductModel<\/a> ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"1627059857<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"9781627059855<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/title\/-\/oclc\/1006739526<\/a>>\u00A0\u00A0\u00A0\u00A0a \ngenont:InformationResource<\/a>, genont:ContentTypeGenericResource<\/a> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/www.worldcat.org\/oclc\/1006739526<\/a>> ; # Deep learning for computer architects<\/span>\n\u00A0\u00A0\u00A0\nschema:dateModified<\/a> \"2020-03-02<\/span>\" ;\u00A0\u00A0\u00A0\nvoid:inDataset<\/a> <http:\/\/purl.oclc.org\/dataset\/WorldCat<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/title\/-\/oclc\/1006739526#PublicationEvent\/san_rafael_california_morgan_&_claypool_2017<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:PublicationEvent<\/a> ;\u00A0\u00A0\u00A0\nschema:location<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4479792136#Place\/san_rafael_california<\/a>> ; # San Rafael, California<\/span>\n\u00A0\u00A0\u00A0\nschema:organizer<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/4479792136#Agent\/morgan_&_claypool<\/a>> ; # Morgan & Claypool<\/span>\n\u00A0\u00A0\u00A0\nschema:startDate<\/a> \"2017<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Content-negotiable representations<\/p>\n