skip to content
Covid-19 virus
COVID-19 Resources

Reliable information about the coronavirus (COVID-19) is available from the World Health Organization (current situation, international travel). Numerous and frequently-updated resource results are available from this WorldCat.org search. OCLC’s WebJunction has pulled together information and resources to assist library staff as they consider how to handle coronavirus issues in their communities.

Image provided by: CDC/ Alissa Eckert, MS; Dan Higgins, MAM
Differential and integral calculus Preview this item
ClosePreview this item
Checking...

Differential and integral calculus

Author: Edmund Landau
Publisher: New York : Chelsea Pub. Co., 1951, ©1950.
Edition/Format:   Print book : EnglishView all editions and formats
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Additional Physical Format: Online version:
Landau, Edmund, 1877-1938.
Differential and integral calculus.
New York, Chelsea Pub. Co., 1951 [©1950]
(OCoLC)617310951
Document Type: Book
All Authors / Contributors: Edmund Landau
OCLC Number: 1040173
Language Note: Translation of Einführung in die Differentialrechnung und Integralrechnung.
Description: 366 pages ; 24 cm
Contents: pt. I. Differential calculus --
Limits as n = [lemniscate] --
Logarithms, powers, and roots --
Functions and continuity --
Limits as x = [xi] --
Definition of the derivative --
General theorems on the formation of the derivative --
Increase, decrease, maximum, minimum --
general properties of continuous functions on closed intervals --
Rolle's theorem and the theorem of the mean --
Derivatives of higher order; Taylor's theorem --
"0/0" and similar matters --
Infinite series --
Uniform convergence --
Power series --
Exponential series and binomial series --
The trigonometric functions --
Functions of two variables and partial derivatives --
Inverse functions and implicit functions --
The inverse trigonometric functions --
Some necessary algebraic theorems --
pt. II. Integral calculus --
Definition of the integral --
Basic formulas of the integral calculus --
The integration of rational functions --
The integration of certain non-rational functions --
Concept of the definite integral --
Theorems on the definite integral --
The integration of infinite series --
The improper integral --
The integral with infinite limits --
The gamma function --
Fourier series.
Responsibility: by Edmund Landau ; translated from the German by Melvin Hausner and Martin Davis.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Related Subjects:(1)

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


\n\n

Primary Entity<\/h3>\n
<http:\/\/www.worldcat.org\/oclc\/1040173<\/a>> # Differential and integral calculus<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:CreativeWork<\/a>, schema:Book<\/a> ;\u00A0\u00A0\u00A0\nbgn:translationOfWork<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/1040173#CreativeWork\/unidentifiedOriginalWork<\/a>> ;\u00A0\u00A0\u00A0\nlibrary:oclcnum<\/a> \"1040173<\/span>\" ;\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/id.loc.gov\/vocabulary\/countries\/nyu<\/a>> ;\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/dbpedia.org\/resource\/New_York_City<\/a>> ; # New York<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/id.worldcat.org\/fast\/844119<\/a>> ; # Calculus<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/dewey.info\/class\/517.1\/<\/a>> ;\u00A0\u00A0\u00A0\nschema:bookFormat<\/a> bgn:PrintBook<\/a> ;\u00A0\u00A0\u00A0\nschema:copyrightYear<\/a> \"1950<\/span>\" ;\u00A0\u00A0\u00A0\nschema:creator<\/a> <http:\/\/viaf.org\/viaf\/76395702<\/a>> ; # Edmund Landau<\/span>\n\u00A0\u00A0\u00A0\nschema:datePublished<\/a> \"1951<\/span>\" ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"pt. I. Differential calculus -- Limits as n = [lemniscate] -- Logarithms, powers, and roots -- Functions and continuity -- Limits as x = [xi] -- Definition of the derivative -- General theorems on the formation of the derivative -- Increase, decrease, maximum, minimum -- general properties of continuous functions on closed intervals -- Rolle\'s theorem and the theorem of the mean -- Derivatives of higher order; Taylor\'s theorem -- \"0\/0\" and similar matters -- Infinite series -- Uniform convergence -- Power series -- Exponential series and binomial series -- The trigonometric functions -- Functions of two variables and partial derivatives -- Inverse functions and implicit functions -- The inverse trigonometric functions -- Some necessary algebraic theorems -- pt. II. Integral calculus -- Definition of the integral -- Basic formulas of the integral calculus -- The integration of rational functions -- The integration of certain non-rational functions -- Concept of the definite integral -- Theorems on the definite integral -- The integration of infinite series -- The improper integral -- The integral with infinite limits -- The gamma function -- Fourier series.<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:exampleOfWork<\/a> <http:\/\/worldcat.org\/entity\/work\/id\/1298798<\/a>> ;\u00A0\u00A0\u00A0\nschema:inLanguage<\/a> \"en<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isSimilarTo<\/a> <http:\/\/www.worldcat.org\/oclc\/617310951<\/a>> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Differential and integral calculus<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:productID<\/a> \"1040173<\/span>\" ;\u00A0\u00A0\u00A0\nschema:publication<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/1040173#PublicationEvent\/new_york_chelsea_pub_co_1951_1950<\/a>> ;\u00A0\u00A0\u00A0\nschema:publisher<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1298798#Agent\/chelsea_pub_co<\/a>> ; # Chelsea Pub. Co.<\/span>\n\u00A0\u00A0\u00A0\nwdrs:describedby<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/1040173<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Related Entities<\/h3>\n
<http:\/\/dbpedia.org\/resource\/New_York_City<\/a>> # New York<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"New York<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/dewey.info\/class\/517.1\/<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/1298798#Agent\/chelsea_pub_co<\/a>> # Chelsea Pub. Co.<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:Agent<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Chelsea Pub. Co.<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.loc.gov\/vocabulary\/countries\/nyu<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\ndcterms:identifier<\/a> \"nyu<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.worldcat.org\/fast\/844119<\/a>> # Calculus<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Calculus<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/viaf.org\/viaf\/76395702<\/a>> # Edmund Landau<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:birthDate<\/a> \"1877<\/span>\" ;\u00A0\u00A0\u00A0\nschema:deathDate<\/a> \"1938<\/span>\" ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Landau<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Edmund<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Edmund Landau<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/oclc\/617310951<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:CreativeWork<\/a> ;\u00A0\u00A0\u00A0\nrdfs:label<\/a> \"Differential and integral calculus.<\/span>\" ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"Online version:<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isSimilarTo<\/a> <http:\/\/www.worldcat.org\/oclc\/1040173<\/a>> ; # Differential and integral calculus<\/span>\n\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/title\/-\/oclc\/1040173<\/a>>\u00A0\u00A0\u00A0\u00A0a \ngenont:InformationResource<\/a>, genont:ContentTypeGenericResource<\/a> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/www.worldcat.org\/oclc\/1040173<\/a>> ; # Differential and integral calculus<\/span>\n\u00A0\u00A0\u00A0\nschema:dateModified<\/a> \"2019-11-18<\/span>\" ;\u00A0\u00A0\u00A0\nvoid:inDataset<\/a> <http:\/\/purl.oclc.org\/dataset\/WorldCat<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/title\/-\/oclc\/1040173#CreativeWork\/unidentifiedOriginalWork<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:CreativeWork<\/a> ;\u00A0\u00A0\u00A0\nschema:inLanguage<\/a> \"de<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/title\/-\/oclc\/1040173#PublicationEvent\/new_york_chelsea_pub_co_1951_1950<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:PublicationEvent<\/a> ;\u00A0\u00A0\u00A0\nschema:location<\/a> <http:\/\/dbpedia.org\/resource\/New_York_City<\/a>> ; # New York<\/span>\n\u00A0\u00A0\u00A0\nschema:organizer<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1298798#Agent\/chelsea_pub_co<\/a>> ; # Chelsea Pub. Co.<\/span>\n\u00A0\u00A0\u00A0\nschema:startDate<\/a> \"1951<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Content-negotiable representations<\/p>\n