Distributional models of multiword expression compositionality prediction (Computer file, 2017) [WorldCat.org]
skip to content
Distributional models of multiword expression compositionality prediction
Checking...

Distributional models of multiword expression compositionality prediction

Author: Silvio Ricardo CordeiroAlexis NasrCarlos Eduardo RamischAline VillavicencioAntoine DoucetAll authors
Publisher: 2017.
Dissertation: Thèse de doctorat : Informatique : Aix-Marseille : 2017.
Thèse de doctorat : Informatique : Universidade Federal do Rio Grande do Sul (Porto Alegre, Brésil) : 2017.
Edition/Format:   Computer file : Document : Thesis/dissertation : English
Summary:
Les systèmes de traitement automatique des langues reposent souvent sur l'idée que le langage est compositionnel, c'est-à-dire que le sens d'une entité linguistique peut être déduite à partir du sens de ses parties. Cette supposition ne s'avère pas vraie dans le cas des expressions polylexicales (EPLs). Par exemple, une "poule mouillée" n'est ni une poule, ni nécessairement mouillée. Les techniques pour
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Thèses et écrits académiques
Material Type: Document, Thesis/dissertation, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Silvio Ricardo Cordeiro; Alexis Nasr; Carlos Eduardo Ramisch; Aline Villavicencio; Antoine Doucet; Stefan Evert; Timothy T Baldwin; Aix-Marseille Université.; Universidade Federal do Rio Grande do Sul (Porto Alegre, Brésil).; Ecole Doctorale Mathématiques et Informatique de Marseille (Marseille).; Laboratoire d'informatique fondamentale (Marseille).
OCLC Number: 1045078454
Notes: Thèse soutenue en co-tutelle.
Titre provenant de l'écran-titre.
Description: 1 online resource
Responsibility: Silvio Ricardo Cordeiro ; sous la direction de Alexis Nasr et de Carlos Eduardo Ramisch et de Aline Villavicencio.

Abstract:

Les systèmes de traitement automatique des langues reposent souvent sur l'idée que le langage est compositionnel, c'est-à-dire que le sens d'une entité linguistique peut être déduite à partir du sens de ses parties. Cette supposition ne s'avère pas vraie dans le cas des expressions polylexicales (EPLs). Par exemple, une "poule mouillée" n'est ni une poule, ni nécessairement mouillée. Les techniques pour déduire le sens des mots en fonction de leur distribution dans le texte ont obtenu de bons résultats sur plusieurs tâches, en particulier depuis l'apparition des word embeddings. Cependant, la représentation des EPLs reste toujours un problème non résolu. En particulier, on ne sait pas comment prédire avec précision, à partir des corpus, si une EPL donnée doit être traitée comme une unité indivisible (p.ex. "carton plein") ou comme une combinaison du sens de ses parties (p.ex. "eau potable"). Cette thèse propose un cadre méthodologique pour la prédiction de compositionnalité d'EPLs fondé sur des représentations de la sémantique distributionnelle, que nous instancions à partir d'une variété de paramètres. Nous présenterons une évaluation complète de l'impact de ces paramètres sur trois nouveaux ensembles de données modélisant la compositionnalité d'EPLs, en anglais, français et portugais. Finalement, nous présenterons une évaluation extrinsèque des niveaux de compositionnalité prédits par le modèle dans le contexte d'un système d'identification d'EPLs. Les résultats suggèrent que le choix spécifique de modèle distributionnel et de paramètres de corpus peut produire des prédictions de compositionnalité qui sont comparables à celles présentées dans l'état de l'art.

Natural language processing systems often rely on the idea that language is compositional, that is, the meaning of a linguistic entity can be inferred from the meaning of its parts. This expectation fails in the case of multiword expressions (MWEs). For example, a person who is a "sitting duck" is neither a duck nor necessarily sitting. Modern computational techniques for inferring word meaning based on the distribution of words in the text have been quite successful at multiple tasks, especially since the rise of word embedding approaches. However, the representation of MWEs still remains an open problem in the field. In particular, it is unclear how one could predict from corpora whether a given MWE should be treated as an indivisible unit (e.g. "nut case") or as some combination of the meaning of its parts (e.g. "engine room"). This thesis proposes a framework of MWE compositionality prediction based on representations of distributional semantics, which we instantiate under a variety of parameters. We present a thorough evaluation of the impact of these parameters on three new datasets of MWE compositionality, encompassing English, French and Portuguese MWEs. Finally, we present an extrinsic evaluation of the predicted levels of MWE compositionality on the task of MWE identification. Our results suggest that the proper choice of distributional model and corpus parameters can produce compositionality predictions that are comparable to the state of the art.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.