skip to content
Dynamics in One Complex Variable. (AM-160). Preview this item
ClosePreview this item
Checking...

Dynamics in One Complex Variable. (AM-160).

Author: Milnor, John.
Publisher: Princeton University Press 2010.
Edition/Format:   eBook : Document : English
Rating:

(not yet rated) 0 with reviews - Be the first.

Find a copy online

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic resource
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Milnor, John.
ISBN: 1283001489 9781283001489
OCLC Number: 741250952
Description: 1 online resource (310)
Contents: Cover --
Title --
Copyright --
Table of Contents --
List of Figures --
Preface to the Third Edition --
Chronological Table --
Riemann Surfaces --
1. Simply Connected Surfaces --
2. Universal Coverings and the Poincar233; Metric --
3. Normal Families: Montel's Theorem --
Iterated Holomorphic Maps --
4. Fatou and Julia: Dynamics on the Riemann Sphere --
5. Dynamics on Hyperbolic Surfaces --
6. Dynamics on Euclidean Surface --
7. Smooth Julia Sets --
Local Fixed Point Theory --
8. Geometrically Attracting or Repelling Fixed Points --
9. B246;ttcher's Theorem and Polynomial Dynamics --
10. Parabolic Fixed Points: The LeauFatou Flower --
11. Cremer Points and Siegel Disks --
Periodic Points: Global Theory --
12. The Holomorphic Fixed Point Formula --
13. Most Periodic Orbits Repel --
14. Repelling Cycles Are Dense in J --
Structure of the Fatou Set --
15. Herman Rings --
16. The Sullivan Classification of Fatou Components --
Using the Fatou Set to Study the Julia Set --
17. Prime Ends and Local Connectivity --
18. Polynomial Dynamics: External Rays --
19. Hyperbolic and Subhyperbolic Maps --
Appendices --
Appendix A. Theorems from Classical Analysis --
Appendix B. Length-Area-Modulus Inequalities --
Appendix C. Rotations, Continued Fractions, and Rational Approximation --
Appendix D. Two or More Complex Variables --
Appendix E. Branched Coverings and Orbifolds --
Appendix F. No Wandering Fatou Components --
Appendix G. Parameter Spaces --
Appendix H. Computer Graphics and Effective Computation --
References --
Index --
A --
B --
C --
D --
E --
F --
G --
H --
I --
J --
K --
L --
M --
N --
O --
P --
Q --
R --
S --
T --
U --
V --
W --
Y --
Z.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/741250952> # Dynamics in One Complex Variable. (AM-160).
    a schema:CreativeWork, schema:Book, schema:MediaObject ;
    library:oclcnum "741250952" ;
    schema:bookFormat schema:EBook ;
    schema:contributor <http://experiment.worldcat.org/entity/work/data/9094025704#Agent/milnor_john> ; # Milnor, John.
    schema:datePublished "2010" ;
    schema:description "Cover -- Title -- Copyright -- Table of Contents -- List of Figures -- Preface to the Third Edition -- Chronological Table -- Riemann Surfaces -- 1. Simply Connected Surfaces -- 2. Universal Coverings and the Poincar233; Metric -- 3. Normal Families: Montel's Theorem -- Iterated Holomorphic Maps -- 4. Fatou and Julia: Dynamics on the Riemann Sphere -- 5. Dynamics on Hyperbolic Surfaces -- 6. Dynamics on Euclidean Surface -- 7. Smooth Julia Sets -- Local Fixed Point Theory -- 8. Geometrically Attracting or Repelling Fixed Points -- 9. B246;ttcher's Theorem and Polynomial Dynamics -- 10. Parabolic Fixed Points: The LeauFatou Flower -- 11. Cremer Points and Siegel Disks -- Periodic Points: Global Theory -- 12. The Holomorphic Fixed Point Formula -- 13. Most Periodic Orbits Repel -- 14. Repelling Cycles Are Dense in J -- Structure of the Fatou Set -- 15. Herman Rings -- 16. The Sullivan Classification of Fatou Components -- Using the Fatou Set to Study the Julia Set -- 17. Prime Ends and Local Connectivity -- 18. Polynomial Dynamics: External Rays -- 19. Hyperbolic and Subhyperbolic Maps -- Appendices -- Appendix A. Theorems from Classical Analysis -- Appendix B. Length-Area-Modulus Inequalities -- Appendix C. Rotations, Continued Fractions, and Rational Approximation -- Appendix D. Two or More Complex Variables -- Appendix E. Branched Coverings and Orbifolds -- Appendix F. No Wandering Fatou Components -- Appendix G. Parameter Spaces -- Appendix H. Computer Graphics and Effective Computation -- References -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Y -- Z."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/9094025704> ;
    schema:genre "Electronic resource"@en ;
    schema:inLanguage "en" ;
    schema:name "Dynamics in One Complex Variable. (AM-160)."@en ;
    schema:productID "741250952" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/741250952#PublicationEvent/princeton_university_press2010> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/9094025704#Agent/princeton_university_press> ; # Princeton University Press
    schema:url <http://www.myilibrary.com?id=300148&ref=toc> ;
    schema:url <http://www.myilibrary.com?id=300148> ;
    schema:workExample <http://worldcat.org/isbn/9781283001489> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/741250952> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/9094025704#Agent/milnor_john> # Milnor, John.
    a bgn:Agent ;
    schema:name "Milnor, John." ;
    .

<http://experiment.worldcat.org/entity/work/data/9094025704#Agent/princeton_university_press> # Princeton University Press
    a bgn:Agent ;
    schema:name "Princeton University Press" ;
    .

<http://worldcat.org/isbn/9781283001489>
    a schema:ProductModel ;
    schema:isbn "1283001489" ;
    schema:isbn "9781283001489" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.