skip to content
Covid-19 virus
COVID-19 Resources

Reliable information about the coronavirus (COVID-19) is available from the World Health Organization (current situation, international travel). Numerous and frequently-updated resource results are available from this WorldCat.org search. OCLC’s WebJunction has pulled together information and resources to assist library staff as they consider how to handle coronavirus issues in their communities.

Image provided by: CDC/ Alissa Eckert, MS; Dan Higgins, MAM
EFFICIENT AROMATICS PROCESSES : design, operation and optimization. Preview this item
ClosePreview this item
Checking...

EFFICIENT AROMATICS PROCESSES : design, operation and optimization.

Author: FRANK XIN X ZHU
Publisher: [S.l.] : JOHN WILEY, 2019.
Edition/Format:   Print book : English
Rating:

(not yet rated) 0 with reviews - Be the first.

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Book
All Authors / Contributors: FRANK XIN X ZHU
ISBN: 1119487862 9781119487869
OCLC Number: 1099690681
Contents: PrefaceAcknowledgementPart 1: Basics1. Overview of This Book1.1 Why Petrochemical Products are Important for the Economy?1.1.1 Polyethylene1.1.2 Polypropylene1.1.3 Styrene and Polystyrene1.1.4 Polyester1.1.5 Polycarbonate and Phenolic Resins1.1.6 Economic Significance of Polymers1.1.7 Petrochemicals and Petroleum Utilization1.2 Overall Petrochemical Complex Configurations1.3 Context of Process Design and Operation for Petrochemical Production1.4 Who is this Book Written for?2 Market and Technology Overview2.1 Overview of Aromatic Petrochemicals2.2 Introduction and Market Information2.2.1 Benzene2.2.2 Benzene Production Technologies2.2.3 Toluene2.2.4 Toluene Production Technologies2.2.5 Ethylbenzene/Styrene2.2.6 Ethylbenzene/Styrene Production Technologies2.2.7 Para-Xylene2.2.8 Para-Xylene Production Technologies2.2.9 Meta-Xylene2.2.10 Meta-Xylene Production Technologies2.2.11 Ortho-Xylene2.2.12 Ortho-Xylene Production Technologies2.2.13 Cumene/Phenol2.2.14 Cumene/Phenol Production Technologies2.3 Technologies in Aromatics Synthesis2.4 Alternative Feeds for Aromatics2.5 Technologies in Aromatic Transformation2.5.1 Transalkylation2.5.2 Selective Toluene Disproportionation2.5.3 Thermal Hydro-Dealkylation2.5.4 Xylene Isomerization2.6 Technologies in Aromatics Separations2.6.1 Liquid-Liquid Extraction and Extractive Distillation2.6.2 Liquid-Liquid Extraction2.6.3 Extractive Distillation (ED)2.7 Separations by Molecular Weight2.8 Separations by Isomer Type - Para-Xylene2.8.1 Crystallization of Para-Xylene2.8.2 Adsorptive Separation of Para-Xylene2.9 Separations by Isomer Type - Meta-Xylene2.10 Separations by Isomer Type - Ortho-Xylene and Ethylbenzene2.11 Other Related Aromatics Technologies2.11.1 Cyclohexane2.11.2 Ethylbenzene/Styrene2.11.3 Cumene/Phenol/Bisphenol A2.11.4 Linear Alkyl Benzene Sulfonate for Detergents2.11.5 Oxidation of Para- and Meta-Xylene2.11.6 Melt Phase Polymerization of PTA to PET2.11.7 Melt Phase Polymerization and Solid State Polymerization of PET Resin2.11.8 Oxidation of Ortho-Xylene2.12 Integrated Refining and Petrochemicals3 Aromatics Process Description3.1 Overall Aromatics Flowscheme3.2 Adsorptive Separations for Para-Xylene3.3 Technologies for Treating Feeds for Aromatics Production3.4 Para-Xylene Purification and Recovery by Crystallization3.5 Transalkylation Processes3.6 Xylene Isomerization3.7 Adsorptive Separation of Pure Meta-Xylene3.8 Para-Selective Catalytic Technologies for Para-Xylene3.8.1 Para-selective Toluene Disproportionaiton3.8.2 Para-selective Toluene MethylationPart 2: Process Design4 Aromatic Process Unit Design (Dave; done)4.1 Introduction4.2 Aromatics Fractionation4.2.1 Reformate Splitter4.2.2 Xylene Fractionation4.2.3 Heavy Aromatics Fractionation4.3 Aromatic Extraction4.3.1 Liquid-Liquid Extraction4.3.1.1 Operating Variables4.3.2 Extractive Distillation4.3.2.1 Operating Variables4.4 Transalkylation4.4.1 Process Flow Description4.5 Xylene Isomerization4.6 Para-Xylene Separation4.7 Process Design Considerations - Design Margin Philosophy4.7.1 Equipment Design Margins4.8 Process Design Considerations - Operational Flexibility4.9 Process Design Considerations - Fractionation Optimization4.10 Safety Considerations4.10.1 Reducing Exposure to Hazardous Materials4.10.2 Process Hazard Analysis (PHA)4.10.3 Hazard and Operability Study (HAZOP)4.11 References5 Aromatics Process Revamp Design5.1 Introduction5.2 Stages of Revamp Assessment and Types of Revamp Studies5.3 Revamp Project Approach5.3.1 Specified Target Capacity5.3.2 Target Production with Constraints5.3.3 Maximize Throughput at Minimum Cost5.3.4 Identify Successive bottlenecks5.4 Revamp Study Methodology and Strategies5.5 Setting the Design Basis for Revamp Projects5.5.1 Agreement5.5.2 Processing Objectives5.5.3 Define the Approach of the Study5.5.4 Feedstock and Make-up Gas5.5.5 Product Specifications5.5.6 Getting the Right Equipment Information5.5.7 Operating Data or Test Run Data5.5.8 Constraints5.5.9 Utilities5.5.10 Replacement Equipment Options5.5.11 Guarantees5.5.12 Economic Evaluation Criteria5.6 Process Design for Revamp Projects5.6.1 Adjusting Operating Conditions5.6.2 Design margin5.7 Revamp Impact on Utilities5.8 Equipment Evaluation for Revamps5.8.1 Fired Heaters5.8.1.1 Data Required5.8.1.2 Fired Heater Evaluation5.8.1.3 Heater Design Limitations5.8.1.4 Radiant Flux Limits5.8.1.5 Tube Wall Temperature (TWT) Limits5.8.1.6 Metallurgy5.8.1.7 Tube Thickness5.8.1.8 Coil Pressure Drop5.8.1.9 Burners5.8.2 Vessels - Separators, Receivers, and Drums5.8.2.1 Data required5.8.2.2 Separator, Receiver, and Drum Evaluation5.8.2.3 Process and Other Modifications5.8.2.4 Test Run Data5.8.2.5 Possible Recommendations5.8.3 Reactors5.8.3.1 Data Required5.8.3.2 Reactor Process Evaluation5.8.3.3 Process and Other Modifications5.8.3.4 Test Run Data5.8.3.5 Possible Recommendations5.8.4 Fractionators5.8.4.1 Data Required5.8.4.2 Fractionator Evaluation5.8.4.3 Retraying and Other Modifications5.8.4.4 High Capacity Trays5.8.4.5 Test Run data5.8.4.6 Possible Recommendations5.8.5 Heat Exchangers5.8.5.1 Data Required5.8.5.2 Overall Exchanger Evaluation5.8.5.3 Thermal Rating Methods5.8.5.4 Rating Procedures5.8.5.5 Pressure Drop Estimation5.8.5.6 Use of Operating Data5.8.5.7 Possible Recommendations5.8.5.8 Special Exchanger Services5.8.5.9 Overpressure Protection5.8.6 Pumps5.8.6.1 Data Required5.8.6.2 Centrifugal Pump Evaluation5.8.6.3 Proportioning Pumps5.8.6.4 Use of Operating Data5.8.6.5 Possible Recommendations5.8.6.6 Tools5.8.6.7 Special Pump Services5.8.7 Compressors5.8.7.1 Data Required5.8.7.2 Centrifugal Compressor Evaluation5.8.7.3 Reciprocating Compressor Evaluation5.8.7.4 Driver Power5.8.7.5 Materials of Construction5.8.7.6 Use of Operating data5.8.7.7 Potential Remedies5.8.8 Hydraulics/Piping5.8.8.1 New Unit Line Sizing Criteria are Generally Not Applicable5.8.8.2 Pressure Drop Requires Replacement of Other Equipment5.8.8.3 Approaching Sonic Velocity5.8.8.4 Erosion Concerns5.8.8.5 Pressure Drop Affects Yield5.8.8.6 Pressure Drop Affects Fractionator Operation or Utilities5.9 Economic Evaluation5.9.1 Costs5.9.2 Benefits5.9.3 Data Requirements5.9.4 Types of Economic Analyses5.10 Example Revamp Cases5.10.1 Aromatics Complex Revamp with Adsorbent Reload5.10.2 Aromatics Complex Revamp with Xylene Isomerization Catalyst Change5.10.3 Transalkylation Unit Revamp5.11 ReferencesPart 3: Process Equipment Assessment6 Distillation Column Assessment6.1 Introduction6.2 Define a Base Case6.3 Calculations for Missing and Incomplete Data6.4 Building a Process Simulation6.5 Heat and Material Balance Assessment6.6 Tower Efficiency Assessment6.7 Operating Profile Assessment6.8 Tower Rating Assessment6.9 Guidelines6.10 Nomenclature6.11 References7 Heat Exchanger Assessment7.1 Introduction7.2 Basic Concepts and Calculations7.3 Understand Performance Criterion - U Value7.3.1 Required U Value (UR)7.3.2 Clean U Value (UC)7.3.3 Actual U Value (UA)7.3.4 Overdesign (ODA)7.3.5 Controlling Resistance7.4 Understand Fouling7.4.1 Root Causes of Fouling7.4.2 Estimate Fouling Factor (Rf)7.4.3 Determine Additional Pressure Drop Due to Fouling7.5 Understand Pressure Drop7.5.1 Tube Side Pressure Drop7.5.2 Shell Side Pressure Drop7.6 Effects of Velocity on Heat Transfer, Pressure Drop, and Fouling7.6.1 Heat Exchanger Rating Assessment7.6.2 Assess the Suitability of an Existing Exchanger for Changing Conditions7.6.3 Determine Arrangement of Heat Exchangers in Series or Parallel7.6.4 Assess Heat Exchanger Fouling7.7 Improving Heat Exchanger Performance7.7.1 How to Identify Deteriorating Performance7.8 Nomenclature7.9 References8 Fired Heater Assessment8.1 Introduction8.2 Fired Heater Design for High Reliability8.2.1 Flux Rate8.2.2 Burner to Tube Clearance8.2.3 Burner Selection8.2.4 Fuel conditioning System8.3 Fired Heater Operation for High Reliability8.4 Efficient Fired Heater Operation8.5 Fired Heater Revamp8.6 Nomenclature8.7 References9 Compressor Assessment9.1 Introduction9.2 Types of Compressors9.2.1 Multistage Beam Type Compressor9.2.2 Multistage Integral Geared Compressor9.3 Impeller Configurations9.3.1 Between-Bearing Configuration9.3.2 Integrally Geared Configuration9.4 Types of Blades9.5 How a Compressor Works9.6 Fundamentals of Centrifugal Compressors9.7 Performance Curves9.8 Partial Load Control9.9 Inlet Throttle Valve9.10 Process Context for a Centrifugal Compressor9.11 Compressor Selection9.12 References10 Pump Assessment10.1 Introduction10.2 Understanding Pump Head10.3 Define Pump Head - Bernoulli Equation10.4 Calculate Pump Head10.5 Total Head Calculation Examples10.6 Pump System Characteristics - System Curve10.7 Pump Characteristics - Pump Curve10.8 Best Efficiency Point (BEP)10.9 Pump Curves for Different Pump Arrangements10.10 Net Positive Suction Head (NPSH)10.10.1 Calculation of NPSHA10.10.2 NPSH Margin10.10.3 Measuring NPSHA for Existing Pumps10.10.4 Low NPSH Potential Causes and Mitigation10.11 Spillback10.12 Reliability Operating Envelope (ROE)10.13 Pump Control10.14 Pump Selection and Sizing10.15 Nomenclature10.16 ReferencesPart 4: Energy & Process Optimization11 Process Integration for Higher Efficiency and Low Cost11.1 Introduction11.2 Definition of Process Integration11.3 Composite Curves and Heat Integration11.3.1 Composite Curves11.3.2 Basic Pinch Concepts11.3.3 Energy Use Targeting11.3.4 Pinch Design Rules11.3.5 Cost Targeting: Determine Optimal Tmin11.4 Grand Composite Curves (GCC)11.5 Appropriate Placement Principle for Process Changes11.5.1 General Principle for Appropriate Placement11.5.2 Appropriate Placement for Utility11.5.3 Appropriate Placement for Reaction Process11.5.4 Appropriate Placement for Distillation Column11.5.4.1 The Column Grand Composite Curve (CGCC)11.5.4.2 Column Integration Against Background Process11.5.4.3 Design Procedure for Column Integration11.6 Systematic Approach for Process Integration11.7 Applications of the Process Integration Methodology11.7.1 Column Split for Xylene Column with Thermal Coupling11.7.2 Column Split for Extract Column with Thermal Coupling11.7.3 Use of Dividing-Wall columns (DWC)11.7.4 Use of Light Desorbent11.7.5 Heat Pump for Para-Xylene Column11.7.6 Indirect Column Heat Integration11.7.7 Benefit of Column Integration11.7.8 Process-Process Stream Heat Integration11.7.9 Power Recovery11.7.9.1 Organic Rankine Cycle for Low temperature Heat Recovery11.7.9.2 Variable Frequency Driver on Adsorbent Chamber Circulation Pumps11.7.10 Process Integration Summary11.8 References12 Energy Benchmarking 12.1 Introduction12.2 Definition of Energy Intensity for a Process12.3 The Concept of Fuel Equivalent (FE) for Steam and Power12.4 Calculate Energy Intensity for a Process12.5 Fuel Equivalent for Steam and Power12.5.1 FE Factors for Power (FEpower)12.5.2 FE Factors for Steam, Condensate, and Water12.6 Energy Performance Index (EPI) Method for Energy Benchmarking12.6.1 Benchmarking: Based on the Best-in-Operation Energy Performance (OEP)12.6.2 Benchmarking: Based on Industrial Peers' Energy Performance (PEP)12.6.3 Benchmarking: Based on the Best Technology Energy Performance (TEP)12.7 Concluding Remarks12.8 References13 Key Indicator and Targets13.1 Introduction13.2 Key Indicators Represent Operation Opportunities13.2.1 Reaction and Separation Optimization13.2.2 Heat Exchanger Fouling Mitigation13.2.3 Furnace Operation Optimization13.2.4 Rotating Equipment Operation13.2.5 Minimizing Steam Letdown Flows13.2.6 Turndown Operation13.3 Defining Key Indicators13.3.1 Simplifying the Problem13.3.2 Developing Key Indicators for the Reaction Section13.3.3 Developing Key Indicators for the Product Fractionation Section13.4 Set Up Targets for Key Indicators13.5 Economic Evaluation for Key Indicators13.6 Application 1: Implementing Key Indicators into an "Energy Dashboard"13.7 Application 2: Implementing Key Indicators to Controllers13.8 It is Worth the Effort13.9 References14 Distillation System Optimization14.1 Introduction14.2 Tower Optimization Basics14.2.1 What to Watch: Key Operating Parameters14.2.2 What Effects to Know: Parameter Relationship14.2.3 What to Change: Parameter Optimization14.2.4 Relax Soft Constraints to Improve Margin14.3 Energy Optimization for Distillation System14.4 Overall Process Optimization14.5 Concluding Remarks14.6 References15 Fractionation and Separation Theory and Practice15.1 Introduction15.2 Separation Technology Overview15.3 Distillation Basics15.3.1 Difficulty of Separation15.3.2 Selection of Operating Pressure15.3.3 Types of Reboiler Configurations15.3.4 Optimization of Design15.3.5 Side Products15.4 Advanced Distillation Topics15.4.1 Heavy Oil Distillation15.4.2 Dividing Wall Column15.4.2.1 DWC Fundamentals15.4.2.2 Guidelines for Using DWC Technology15.4.2.3 Application of Dividing Wall Column15.4.3 Choice of Column Internals15.4.4 Limitations with Distillation15.5 Adsorption15.6 Simulated Moving Bed15.6.1 The Concept of Moving Bed15.6.2 The Concept of Simulated Moving Bed15.6.3 Rotary Valve15.7 Crystallization15.8 Liquid-Liquid Extraction15.9 Extractive Distillation15.10 Membranes15.11 Selecting a Separation Method15.12 References16 Reaction Engineering Basics16.1 Introduction16.2 Reaction Basics16.3 Reaction Kinetics Modeling Basics16.4 Rate Equation Based on Surface Kinetics16.5 Limitations in Catalytic Reaction16.5.1 External Diffusion Limitation16.5.2 Surface Reaction Limitation16.5.3 Internal Pore Diffusion Limitation16.5.4 Mitigating Limitations16.5.5 Important Parameters of Limiting Reaction16.6 Reactor Types16.6.1 General Classification16.7 Reactor Design16.7.1 Objective16.7.2 Temperature and Equilibrium Constant16.7.3 Pressure, Reaction Conversion, and Selectivity16.7.4 Reaction Time and Reactor Size16.7.5 Determine the Rate-Limiting Step16.7.6 Reactor Design Considerations16.7.7 General Guidelines16.8 Hybrid Reaction and Separation16.9 Catalyst Deactivation: Root Causes and Modeling16.10 ReferencesPart 5: Operational Guidelines and Troubleshooting17 Common Operating Issues17.1 Introduction17.2 Startup Considerations17.2.1 Catalyst Reduction17.2.2 Catalyst Sulfiding17.2.3 Catalyst Attenuation17.3 Methyl Group and Phenyl Ring Losses17.4 Limiting Aromatics Losses17.4.1 Olefin Removal in an Aromatics Complex17.4.2 Fractionation and Separation Losses17.4.2.1 Vent Losses17.4.2.2 Losses to Distillate Liquid Product17.4.2.3 Losses to Bottoms Liquid Product17.4.3 Extraction Losses17.4.3.1 Common Variables Affecting Aromatic Recovery17.4.3.2 Feed Composition17.4.3.3 Foaming17.4.4 Reaction Losses17.4.4.1 Xylene Isomerization Unit Losses17.4.4.2 Transalkylation Unit Losses17.4.5 Methyl Group Losses17.4.5.1 Fractionation and Separation Losses17.4.5.2 Reaction Losses17.5 Fouling17.5.1 Combine Feed Exchanger Fouling17.5.1.1 Chemical Foulants17.5.1.2 Particulate Foulants17.5.2 Process Heat Exchanger Fouling17.5.3 Heater Fouling17.5.4 Specialty Reboiler Tube Fouling17.5.5 Line Fouling17.5.6 Extraction Unit Column Fouling17.6 Aromatics Extraction Unit Solvent Degradation17.6.1 Oxygen and Oxygenates17.6.2 Temperature17.6.3 Chloride17.6.4 Other Measurements17.7 Selective Adsorption of Para-Xylene by Simulated Moving Bed17.7.1 Purity and Recovery Relationship17.7.2 Meta-Xylene Contamination17.7.3 Common Poisons17.7.3.1 Olefins17.7.3.2 Oxygenates17.7.3.3 Heavy Aromatics17.7.3.4 Water17.7.4 Rotary Valve (TM) Monitoring17.7.4.1 Dome Pressure17.7.4.2 Alignment17.7.4.3 Maintenance17.7.5 Flow Meter Monitoring17.7.6 Hydration Monitoring17.7.7 Shutdown and Restart Consideration17.7.7.1 Severe Startup or Shutdown Conditions17.7.7.2 Oxygenate Ingress17.7.7.3 Leaking of Adsorption Section Isolation Valves17.8 Common Issues with Sampling and Laboratory Analysis17.8.1 Bromine Index Analysis for Olefin Measurement17.8.2 Atmospheric Contamination of Samples17.8.3 Analysis of Unstabilized Liquid Samples17.8.4 Gas Chromatography17.8.4.1 Nitrogen vs Hydrogen or Helium Carrier Gas17.8.4.2 Resolution of Meta-Xylene and Para-Xylene Peaks17.8.4.3 Wash Solvent Interference17.8.4.4 Over-Reliance on a Particular Analytical Method17.8.4.5 Impact of Unidentified Components17.9 Measures of Operating Efficiency in Aromatics Complex Process Units17.9.1 Selective Adsorption Para-Xylene Separation Unit17.9.2 Xylene Isomerization Unit17.9.3 Transalkylation Unit17.9.4 Aromatics Extraction Unit17.10 The Future of Plant Troubleshooting and Optimization17.11 References18 Troubleshooting Case Studies18.1 Introduction18.2 Transalkylation Unit - Low Catalyst Activity During Normal Operation18.2.1 Summary of Symptoms18.2.2 Root Cause and Solution18.2.3 Lesson Learned18.3 Xylene Isomerization Unit - Low Catalyst Activity Following Startup18.3.1 Summary of Symptoms18.3.2 Root Cause and Solution18.3.3 Lesson Learned18.4 Para-Xylene Selective Adsorption Unit - Low Recovery After Turnaround18.4.1 Summary of Symptoms18.4.2 Root Cause and Solution18.4.3 Lesson Learned18.5 Aromatics Extraction Unit - Low Extract Purity/Recovery18.5.1 Summary of Symptoms18.5.2 Root Cause and Solution18.5.3 Lesson Learned18.6 Aromatics Complex - Low Para-Xylene Production18.6.1 Summary of Symptoms18.6.2 Root Cause and Solution18.6.3 Lesson Learned18.7 Closing Remarks18.8 References

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


\n\n

Primary Entity<\/h3>\n
<http:\/\/www.worldcat.org\/oclc\/1099690681<\/a>> # EFFICIENT AROMATICS PROCESSES : design, operation and optimization.<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:CreativeWork<\/a>, schema:Book<\/a> ;\u00A0\u00A0\u00A0\nlibrary:oclcnum<\/a> \"1099690681<\/span>\" ;\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/9084488645#Place\/s_l<\/a>> ; # S.l.<\/span>\n\u00A0\u00A0\u00A0\nschema:bookFormat<\/a> bgn:PrintBook<\/a> ;\u00A0\u00A0\u00A0\nschema:creator<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/9084488645#Person\/zhu_frank_xin_x<\/a>> ; # FRANK XIN X. ZHU<\/span>\n\u00A0\u00A0\u00A0\nschema:datePublished<\/a> \"2019<\/span>\" ;\u00A0\u00A0\u00A0\nschema:exampleOfWork<\/a> <http:\/\/worldcat.org\/entity\/work\/id\/9084488645<\/a>> ;\u00A0\u00A0\u00A0\nschema:inLanguage<\/a> \"en<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"EFFICIENT AROMATICS PROCESSES : design, operation and optimization.<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:productID<\/a> \"1099690681<\/span>\" ;\u00A0\u00A0\u00A0\nschema:publication<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/1099690681#PublicationEvent\/s_l_john_wiley_2019<\/a>> ;\u00A0\u00A0\u00A0\nschema:publisher<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/9084488645#Agent\/john_wiley<\/a>> ; # JOHN WILEY<\/span>\n\u00A0\u00A0\u00A0\nschema:workExample<\/a> <http:\/\/worldcat.org\/isbn\/9781119487869<\/a>> ;\u00A0\u00A0\u00A0\nwdrs:describedby<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/1099690681<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Related Entities<\/h3>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/9084488645#Agent\/john_wiley<\/a>> # JOHN WILEY<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:Agent<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"JOHN WILEY<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/9084488645#Person\/zhu_frank_xin_x<\/a>> # FRANK XIN X. ZHU<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"ZHU<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"FRANK XIN X.<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"FRANK XIN X. ZHU<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/9084488645#Place\/s_l<\/a>> # S.l.<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"S.l.<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/isbn\/9781119487869<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:ProductModel<\/a> ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"1119487862<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"9781119487869<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/title\/-\/oclc\/1099690681<\/a>>\u00A0\u00A0\u00A0\u00A0a \ngenont:InformationResource<\/a>, genont:ContentTypeGenericResource<\/a> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/www.worldcat.org\/oclc\/1099690681<\/a>> ; # EFFICIENT AROMATICS PROCESSES : design, operation and optimization.<\/span>\n\u00A0\u00A0\u00A0\nschema:dateModified<\/a> \"2019-11-14<\/span>\" ;\u00A0\u00A0\u00A0\nvoid:inDataset<\/a> <http:\/\/purl.oclc.org\/dataset\/WorldCat<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/title\/-\/oclc\/1099690681#PublicationEvent\/s_l_john_wiley_2019<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:PublicationEvent<\/a> ;\u00A0\u00A0\u00A0\nschema:location<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/9084488645#Place\/s_l<\/a>> ; # S.l.<\/span>\n\u00A0\u00A0\u00A0\nschema:organizer<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/9084488645#Agent\/john_wiley<\/a>> ; # JOHN WILEY<\/span>\n\u00A0\u00A0\u00A0\nschema:startDate<\/a> \"2019<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Content-negotiable representations<\/p>\n