skip to content
Elaboration de micro/nanopinces magnétiques pour applications biotechnologiques Preview this item
ClosePreview this item
Checking...

Elaboration de micro/nanopinces magnétiques pour applications biotechnologiques

Author: Cécile IssBernard DienyNora DempseyFrançois MontaigneBernard DoudinAll authors
Publisher: 2015.
Dissertation: Thèse de doctorat : Nanophysique : Université Grenoble Alpes (ComUE) : 2015.
Edition/Format:   Computer file : Document : Thesis/dissertation : English
Summary:
Cette thèse propose de réaliser des micro/nano-pinces magnétiques articulées dont l'actionnement à distance est obtenu par l'application d'un champ magnétique. Cette idée innovante consiste à relier par l'un de leurs côtés deux microparticules magnétiques parallélépipédiques à l'aide d'une nano-charnière en or flexible. Destinées à des applications biotechnologiques et médicales, ces pinces ont
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Thèses et écrits académiques
Material Type: Document, Thesis/dissertation, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Cécile Iss; Bernard Dieny; Nora Dempsey; François Montaigne; Bernard Doudin; Yanxia Hou-Broutin; Véronique Dupuis, chercheur en physique des matériaux).; Communauté d'universités et d'établissements Université Grenoble Alpes.; École doctorale physique (Grenoble).; Spintronique et technologie des composants (Grenoble).
OCLC Number: 922936997
Notes: Titre provenant de l'écran-titre.
Description: 1 online resource
Responsibility: Cécile Iss ; sous la direction de Bernard Dieny.

Abstract:

Cette thèse propose de réaliser des micro/nano-pinces magnétiques articulées dont l'actionnement à distance est obtenu par l'application d'un champ magnétique. Cette idée innovante consiste à relier par l'un de leurs côtés deux microparticules magnétiques parallélépipédiques à l'aide d'une nano-charnière en or flexible. Destinées à des applications biotechnologiques et médicales, ces pinces ont pour finalité de capturer des micro/nano-objets ciblés biochimiquement pour y appliquer et mesurer des forces. Le défi de ce projet était de mener, à partir d'une idée simple, un ensemble d'études à la fois théoriques et technologiques, pour aboutir à une première preuve de concept. Dans ce but, un modèle analytique a d'abord été construit pour prédire le comportement magnéto-mécanique des pinces en fonction de divers paramètres physiques. Ensuite, un procédé de fabrication inspiré des techniques de la microélectronique a été développé pour parvenir à la réalisation d'un prototype de pince fonctionnel. Enfin, l'ouverture par l'action d'un champ magnétique de pinces fixées à un substrat, a pu être démontrée à l'aide d'une expérience originale installée dans un microscope électronique à balayage. Les résultats de ces expériences, en bon accord avec nos prédictions théoriques, ont permis de quantifier le comportement mécanique de la nano-charnière en or. Fixées à un substrat, ces pinces forment un réseau de micro-surfaces réfléchissantes qui trouveront des applications en microfluidique (bio-puces) ou en nano-physique. Libérées en solution, les pinces pourraient être employées de manière originale en micro-manipulation d'objets biologiques ou diagnostic et thérapie cellulaire.

The objective of this thesis was to elaborate magnetic micro/nano-tweezers remotely actuable by the application of a magnetic field. This innovative idea consists in binding two parallelepiped magnetic microparticles by one of their sides with a flexible gold nano-hinge. Intended for biotechnological and medical applications, these tweezers aim at capturing biochemically targeted micro/nano-objects, in order to exert forces on them and perform force measurements. In this project starting from a simple idea, the challenge was to carry out theoretical and technological studies leading to a first proof of concept. To this end, an analytical model was first elaborated to predict the magneto-elastic behavior of the tweezers, depending on various physical parameters. Then, a fabrication process inspired from microelectronic techniques was developed to complete a functional prototype of tweezers. Finally, the remote actuation of such tweezers, kept attached to a substrate, by the application of a magnetic field, was demonstrated using an original experiment set up inside a scanning electron microscope. These experiments yielded results in good agreement with our theoretical predictions and allowed the quantification of the gold nano-hinge elastic behavior. Attached to a substrate, these tweezers constitute an array of reflective micro-surfaces, which can find applications in microfluidics (biochips) or in nano-physics. Released in solution, the tweezers could be used in an original way for biological objects micro-manipulation or cell diagnostic and the.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


\n\n

Primary Entity<\/h3>\n
<http:\/\/www.worldcat.org\/oclc\/922936997<\/a>> # Elaboration de micro\/nanopinces magn\u00E9tiques pour applications biotechnologiques<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:Thesis<\/a>, schema:CreativeWork<\/a>, schema:MediaObject<\/a>, bgn:ComputerFile<\/a> ;\u00A0\u00A0\u00A0\nbgn:inSupportOf<\/a> \"Th\u00E8se de doctorat : Nanophysique : Universit\u00E9 Grenoble Alpes (ComUE) : 2015.<\/span>\" ;\u00A0\u00A0\u00A0\nlibrary:oclcnum<\/a> \"922936997<\/span>\" ;\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/id.loc.gov\/vocabulary\/countries\/fr<\/a>> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Topic\/micro_fabrication<\/a>> ; # Micro-fabrication<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Topic\/pinces<\/a>> ; # Pinces<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Thing\/nanofabrication<\/a>> ; # Nanofabrication<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Thing\/vortex_magnetique<\/a>> ; # Vortex magn\u00E9tique<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Topic\/magnetisme<\/a>> ; # Magn\u00E9tisme<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Topic\/nanobiotechnologie<\/a>> ; # Nanobiotechnologie<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/dewey.info\/class\/530\/<\/a>> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Thing\/micropinces_magnetiques<\/a>> ; # Micropinces magn\u00E9tiques<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Thing\/modelisation_de_torques_magnetiques<\/a>> ; # Mod\u00E9lisation de torques magn\u00E9tiques<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Thing\/biotechnologie<\/a>> ; # Biotechnologie<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Topic\/modelisation_tridimensionnelle<\/a>> ; # Mod\u00E9lisation tridimensionnelle<\/span>\n\u00A0\u00A0\u00A0\nschema:author<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Person\/iss_cecile_1988<\/a>> ; # C\u00E9cile Iss<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Organization\/spintronique_et_technologie_des_composants_grenoble<\/a>> ; # Spintronique et technologie des composants (Grenoble).<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Person\/dempsey_nora<\/a>> ; # Nora Dempsey<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Person\/dupuis_veronique_19_chercheur_en_physique_des_materiaux<\/a>> ; # chercheur en physique des mat\u00E9riaux). V\u00E9ronique Dupuis<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Person\/doudin_bernard<\/a>> ; # Bernard Doudin<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Person\/montaigne_francois<\/a>> ; # Fran\u00E7ois Montaigne<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Person\/hou_broutin_yanxia<\/a>> ; # Yanxia Hou-Broutin<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Organization\/communaute_d_universites_et_d_etablissements_universite_grenoble_alpes<\/a>> ; # Communaut\u00E9 d\'universit\u00E9s et d\'\u00E9tablissements Universit\u00E9 Grenoble Alpes.<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Organization\/ecole_doctorale_physique_grenoble<\/a>> ; # \u00C9cole doctorale physique (Grenoble).<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Person\/dieny_bernard<\/a>> ; # Bernard Dieny<\/span>\n\u00A0\u00A0\u00A0\nschema:datePublished<\/a> \"2015<\/span>\" ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"The objective of this thesis was to elaborate magnetic micro\/nano-tweezers remotely actuable by the application of a magnetic field. This innovative idea consists in binding two parallelepiped magnetic microparticles by one of their sides with a flexible gold nano-hinge. Intended for biotechnological and medical applications, these tweezers aim at capturing biochemically targeted micro\/nano-objects, in order to exert forces on them and perform force measurements. In this project starting from a simple idea, the challenge was to carry out theoretical and technological studies leading to a first proof of concept. To this end, an analytical model was first elaborated to predict the magneto-elastic behavior of the tweezers, depending on various physical parameters. Then, a fabrication process inspired from microelectronic techniques was developed to complete a functional prototype of tweezers. Finally, the remote actuation of such tweezers, kept attached to a substrate, by the application of a magnetic field, was demonstrated using an original experiment set up inside a scanning electron microscope. These experiments yielded results in good agreement with our theoretical predictions and allowed the quantification of the gold nano-hinge elastic behavior. Attached to a substrate, these tweezers constitute an array of reflective micro-surfaces, which can find applications in microfluidics (biochips) or in nano-physics. Released in solution, the tweezers could be used in an original way for biological objects micro-manipulation or cell diagnostic and the.<\/span>\" ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"Cette th\u00E8se propose de r\u00E9aliser des micro\/nano-pinces magn\u00E9tiques articul\u00E9es dont l\'actionnement \u00E0 distance est obtenu par l\'application d\'un champ magn\u00E9tique. Cette id\u00E9e innovante consiste \u00E0 relier par l\'un de leurs c\u00F4t\u00E9s deux microparticules magn\u00E9tiques parall\u00E9l\u00E9pip\u00E9diques \u00E0 l\'aide d\'une nano-charni\u00E8re en or flexible. Destin\u00E9es \u00E0 des applications biotechnologiques et m\u00E9dicales, ces pinces ont pour finalit\u00E9 de capturer des micro\/nano-objets cibl\u00E9s biochimiquement pour y appliquer et mesurer des forces. Le d\u00E9fi de ce projet \u00E9tait de mener, \u00E0 partir d\'une id\u00E9e simple, un ensemble d\'\u00E9tudes \u00E0 la fois th\u00E9oriques et technologiques, pour aboutir \u00E0 une premi\u00E8re preuve de concept. Dans ce but, un mod\u00E8le analytique a d\'abord \u00E9t\u00E9 construit pour pr\u00E9dire le comportement magn\u00E9to-m\u00E9canique des pinces en fonction de divers param\u00E8tres physiques. Ensuite, un proc\u00E9d\u00E9 de fabrication inspir\u00E9 des techniques de la micro\u00E9lectronique a \u00E9t\u00E9 d\u00E9velopp\u00E9 pour parvenir \u00E0 la r\u00E9alisation d\'un prototype de pince fonctionnel. Enfin, l\'ouverture par l\'action d\'un champ magn\u00E9tique de pinces fix\u00E9es \u00E0 un substrat, a pu \u00EAtre d\u00E9montr\u00E9e \u00E0 l\'aide d\'une exp\u00E9rience originale install\u00E9e dans un microscope \u00E9lectronique \u00E0 balayage. Les r\u00E9sultats de ces exp\u00E9riences, en bon accord avec nos pr\u00E9dictions th\u00E9oriques, ont permis de quantifier le comportement m\u00E9canique de la nano-charni\u00E8re en or. Fix\u00E9es \u00E0 un substrat, ces pinces forment un r\u00E9seau de micro-surfaces r\u00E9fl\u00E9chissantes qui trouveront des applications en microfluidique (bio-puces) ou en nano-physique. Lib\u00E9r\u00E9es en solution, les pinces pourraient \u00EAtre employ\u00E9es de mani\u00E8re originale en micro-manipulation d\'objets biologiques ou diagnostic et th\u00E9rapie cellulaire.<\/span>\" ;\u00A0\u00A0\u00A0\nschema:exampleOfWork<\/a> <http:\/\/worldcat.org\/entity\/work\/id\/2753925229<\/a>> ;\u00A0\u00A0\u00A0\nschema:genre<\/a> \"Th\u00E8ses et \u00E9crits acad\u00E9miques<\/span>\" ;\u00A0\u00A0\u00A0\nschema:inLanguage<\/a> \"en<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Elaboration de micro\/nanopinces magn\u00E9tiques pour applications biotechnologiques<\/span>\" ;\u00A0\u00A0\u00A0\nschema:productID<\/a> \"922936997<\/span>\" ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/www.theses.fr\/2015GREAY018\/document<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <https:\/\/tel.archives-ouvertes.fr\/tel-01212473<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/www.theses.fr\/2015GREAY018\/abes<\/a>> ;\u00A0\u00A0\u00A0\nwdrs:describedby<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/922936997<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Related Entities<\/h3>\n
<http:\/\/dewey.info\/class\/530\/<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Organization\/communaute_d_universites_et_d_etablissements_universite_grenoble_alpes<\/a>> # Communaut\u00E9 d\'universit\u00E9s et d\'\u00E9tablissements Universit\u00E9 Grenoble Alpes.<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Organization<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Communaut\u00E9 d\'universit\u00E9s et d\'\u00E9tablissements Universit\u00E9 Grenoble Alpes.<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Organization\/ecole_doctorale_physique_grenoble<\/a>> # \u00C9cole doctorale physique (Grenoble).<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Organization<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"\u00C9cole doctorale physique (Grenoble).<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Organization\/spintronique_et_technologie_des_composants_grenoble<\/a>> # Spintronique et technologie des composants (Grenoble).<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Organization<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Spintronique et technologie des composants (Grenoble).<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Person\/dempsey_nora<\/a>> # Nora Dempsey<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Dempsey<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Nora<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Nora Dempsey<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Person\/dieny_bernard<\/a>> # Bernard Dieny<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Dieny<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Bernard<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Bernard Dieny<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Person\/doudin_bernard<\/a>> # Bernard Doudin<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Doudin<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Bernard<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Bernard Doudin<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Person\/dupuis_veronique_19_chercheur_en_physique_des_materiaux<\/a>> # chercheur en physique des mat\u00E9riaux). V\u00E9ronique Dupuis<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:birthDate<\/a> \"19..<\/span>\" ;\u00A0\u00A0\u00A0\nschema:deathDate<\/a> \";<\/span>\" ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Dupuis<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"V\u00E9ronique<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"chercheur en physique des mat\u00E9riaux). V\u00E9ronique Dupuis<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Person\/hou_broutin_yanxia<\/a>> # Yanxia Hou-Broutin<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Hou-Broutin<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Yanxia<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Yanxia Hou-Broutin<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Person\/iss_cecile_1988<\/a>> # C\u00E9cile Iss<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:birthDate<\/a> \"1988<\/span>\" ;\u00A0\u00A0\u00A0\nschema:deathDate<\/a> \"\" ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Iss<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"C\u00E9cile<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"C\u00E9cile Iss<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Person\/montaigne_francois<\/a>> # Fran\u00E7ois Montaigne<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Montaigne<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Fran\u00E7ois<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Fran\u00E7ois Montaigne<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Thing\/biotechnologie<\/a>> # Biotechnologie<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Biotechnologie<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Thing\/micropinces_magnetiques<\/a>> # Micropinces magn\u00E9tiques<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Micropinces magn\u00E9tiques<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Thing\/modelisation_de_torques_magnetiques<\/a>> # Mod\u00E9lisation de torques magn\u00E9tiques<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Mod\u00E9lisation de torques magn\u00E9tiques<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Thing\/nanofabrication<\/a>> # Nanofabrication<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Nanofabrication<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Thing\/vortex_magnetique<\/a>> # Vortex magn\u00E9tique<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Vortex magn\u00E9tique<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Topic\/magnetisme<\/a>> # Magn\u00E9tisme<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Magn\u00E9tisme<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Topic\/micro_fabrication<\/a>> # Micro-fabrication<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Micro-fabrication<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Topic\/modelisation_tridimensionnelle<\/a>> # Mod\u00E9lisation tridimensionnelle<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Mod\u00E9lisation tridimensionnelle<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Topic\/nanobiotechnologie<\/a>> # Nanobiotechnologie<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Nanobiotechnologie<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/2753925229#Topic\/pinces<\/a>> # Pinces<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Pinces<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.loc.gov\/vocabulary\/countries\/fr<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\ndcterms:identifier<\/a> \"fr<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.theses.fr\/2015GREAY018\/document<\/a>>\u00A0\u00A0\u00A0\nrdfs:comment<\/a> \"Acc\u00E8s au texte int\u00E9gral<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/title\/-\/oclc\/922936997<\/a>>\u00A0\u00A0\u00A0\u00A0a \ngenont:InformationResource<\/a>, genont:ContentTypeGenericResource<\/a> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/www.worldcat.org\/oclc\/922936997<\/a>> ; # Elaboration de micro\/nanopinces magn\u00E9tiques pour applications biotechnologiques<\/span>\n\u00A0\u00A0\u00A0\nschema:dateModified<\/a> \"2020-10-07<\/span>\" ;\u00A0\u00A0\u00A0\nvoid:inDataset<\/a> <http:\/\/purl.oclc.org\/dataset\/WorldCat<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Content-negotiable representations<\/p>\n