Find a copy online
Links to this item
Find a copy in the library
Finding libraries that hold this item...
Details
Genre/Form: | Thèses et écrits académiques |
---|---|
Material Type: | Document, Thesis/dissertation, Internet resource |
Document Type: | Internet Resource, Computer File |
All Authors / Contributors: |
Mohamad Ali Sammoury; Serge Nicaise; Ali Wehbe; Hassan Ibrahim; Abdellatif El Badia; Louis Roder Tcheugoué Tébou; Michel Mehrenberger; Denis Mercier, matheÌmaticien).; Ahmad Fino, chercheur en matheÌmatiques appliqueÌes).; Université de Valenciennes et du Hainaut-Cambrésis (Valenciennes, Nord / 1970-2019).; Université libanaise.; École doctorale Sciences pour l'Ingénieur (Lille).; Laboratoire de mathématiques et leurs applications de Valenciennes (2006-....).; Communauté d'universités et d'établissements Lille Nord de France.; Laboratoire de Mathématiques (Hadath, Liban). |
OCLC Number: | 987297660 |
Notes: | Thèse soutenue en co-tutelle. Titre provenant de l'écran-titre. |
Description: | 1 online resource |
Responsibility: | Mohamad Ali Sammoury ; sous la direction de Serge Nicaise et de Ali Wehbe. |
Abstract:
This thesis is devoted to the study of the stabilization of some distributed systems with dynamic boundary control. First, we consider the stabilization of the Rayleigh beam equation with only one dynamic boundary control moment or force. We show that the system is not uniformly (exponentially) stable. However, using a spectral method, we establish the optimal polynomial decay rate of the energy of the system. Next, we study the indirect stability of the wave equation with a fractional dynamic boundary control. We show that the decay rate of the energy depends on the nature of the geometry of the domain. Using a frequency approach and a spectral method, we show the non exponential stability of the system and we establish, different polynomial stability results. Finally, we consider the finite difference space discretization of the 1-d wave equation with dynamic boundary control. First, using a spectral approach, we show that the polynomial decay of the discretized energy is not uniform with respect to the mesh size, as the energy of the continuous system. Next, we introduce a viscosity term and we establish the uniform (with respect to the mesh size) polynomial energy decay of our discrete scheme.
Reviews


Tags
Similar Items
Related Subjects:(16)
- Équations d'onde.
- Développements asymptotiques.
- Spectroscopie.
- Contrôle frontière dynamique
- Non stabilité exponentielle
- Stabilité polynomiale
- Optimalité
- Etude spectrale
- Méthode fréquentielle
- Base de Riesz
- Méthode des multiplicateurs
- Inégalité d'observabilité
- Comportement asymptotique
- Fonction de transfère
- Semi discrétisation
- Terme de viscosité.