skip to content
Covid-19 virus
COVID-19 Resources

Reliable information about the coronavirus (COVID-19) is available from the World Health Organization (current situation, international travel). Numerous and frequently-updated resource results are available from this WorldCat.org search. OCLC’s WebJunction has pulled together information and resources to assist library staff as they consider how to handle coronavirus issues in their communities.

Image provided by: CDC/ Alissa Eckert, MS; Dan Higgins, MAM
Euler's gem : the polyhedron formula and the birth of topology Preview this item
ClosePreview this item
Checking...

Euler's gem : the polyhedron formula and the birth of topology

Author: David S Richeson
Publisher: Princeton, N.J. : Princeton University Press, ©2008.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
Leonhard Euler's polyhedron formula describes the structure of many objects--from soccer balls and gemstones to Buckminster Fuller's buildings and giant all-carbon molecules. Yet Euler's formula is so simple it can be explained to a child. Euler's Gem tells the illuminating story of this indispensable mathematical idea. From ancient Greek geometry to today's cutting-edge research, Euler's Gem celebrates the  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
History
Historia
Additional Physical Format: Print version:
Richeson, David S. (David Scott).
Euler's gem.
Princeton, N.J. : Princeton University Press, ©2008
(DLC) 2008062108
(OCoLC)225091369
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: David S Richeson
ISBN: 9781400838561 1400838568 1283129264 9781283129268 9786613129260 6613129267
OCLC Number: 753980256
Language Note: English.
Awards: Winner of Mathematical Association of America's Euler Book Prize 2010
Short-listed for Choice Magazine Outstanding Reference/Academic Book Award 2009
Runner-up for Choice Magazine Outstanding Reference/Academic Book Award 2009
Description: 1 online resource (xii, 317 pages) : illustrations, maps
Contents: Leonhard Euler and his three "great" friends --
What is a polyhedron? --
The five perfect bodies --
The Pythagorean brotherhood and Plato's atomic theory --
Euclid and his elements --
Kepler's polyhedral universe --
Euler's gem --
Platonic solids, gold balls, Fullerenes, and geodesic domes --
Scooped by Descartes? --
Legendre gets it right --
A stroll through Königsberg --
Cauchy's flattened polyhedra --
Planar graphs, geoboards, and brussels sprouts --
It's a colorful world --
New problems and new proofs --
Rubber sheets, hollow doughnuts, and crazy bottles --
Are they the same, or are they different? --
A knotty problem --
Combing the hair on a coconut --
When topology controls geometry --
The topology of curvy surfaces --
Navigating in n dimensions --
Henri Poincaré and the ascendance of topology --
The million-dollar question.
Responsibility: David S. Richeson.

Abstract:

Leonhard Euler's polyhedron formula describes the structure of many objects - from soccer balls and gemstones to Buckminster Fuller's buildings and giant all-carbon molecules. Yet Euler's formula is  Read more...

Reviews

Editorial reviews

Publisher Synopsis

Winner of the 2010 Euler Book Prize, Mathematical Association of America One of Choice's Outstanding Academic Titles for 2009 "The author has achieved a remarkable feat, introducing a naive reader to Read more...

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


\n\n

Primary Entity<\/h3>\n
<http:\/\/www.worldcat.org\/oclc\/753980256<\/a>> # Euler\'s gem : the polyhedron formula and the birth of topology<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:MediaObject<\/a>, schema:CreativeWork<\/a>, schema:Book<\/a> ;\u00A0\u00A0\u00A0\nlibrary:oclcnum<\/a> \"753980256<\/span>\" ;\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/id.loc.gov\/vocabulary\/countries\/nju<\/a>> ;\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/796249757#Place\/princeton_n_j<\/a>> ; # Princeton, N.J.<\/span>\n\u00A0\u00A0\u00A0\nrdfs:comment<\/a> \"Warning: This malformed URI has been treated as a string - \'https:\/\/www.safaribooksonline.com\/library\/view\/title\/9781400838561\/?ar?orpq&email=^u\'<\/span>\" ;\u00A0\u00A0\u00A0\nrdfs:comment<\/a> \"Warning: This malformed URI has been treated as a string - \'http:\/\/images.contentreserve.com\/ImageType-100\/1980-1\/{D2A2B475-7D0D-4173-8FF3-B0BE7DE9700E}Img100.jpg\'<\/span>\" ;\u00A0\u00A0\u00A0\nrdfs:comment<\/a> \"Warning: This malformed URI has been treated as a string - \'https:\/\/www.safaribooksonline.com\/library\/view\/-\/9781400838561\/?ar?orpq&email=^u\'<\/span>\" ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/id.worldcat.org\/fast\/1070511<\/a>> ; # Polyhedra<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/796249757#Topic\/mathematics_topology<\/a>> ; # MATHEMATICS--Topology<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/796249757#Topic\/topologia<\/a>> ; # Topolog\u00EDa<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/796249757#Topic\/topology_history<\/a>> ; # Topology--History<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/796249757#Topic\/euler_poincare_charakteristik<\/a>> ; # Euler-Poincar\u00E9-Charakteristik<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/dewey.info\/class\/514.09\/e23\/<\/a>> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/796249757#Topic\/poliedros<\/a>> ; # Poliedros<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/796249757#Topic\/polyeder<\/a>> ; # Polyeder<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/796249757#Topic\/mathematics_geometry_general<\/a>> ; # MATHEMATICS--Geometry--General<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/796249757#Topic\/algebraische_topologie<\/a>> ; # Algebraische Topologie<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/id.worldcat.org\/fast\/1152692<\/a>> ; # Topology<\/span>\n\u00A0\u00A0\u00A0\nschema:bookFormat<\/a> schema:EBook<\/a> ;\u00A0\u00A0\u00A0\nschema:copyrightYear<\/a> \"2008<\/span>\" ;\u00A0\u00A0\u00A0\nschema:creator<\/a> <http:\/\/viaf.org\/viaf\/49049689<\/a>> ; # David Scott Richeson<\/span>\n\u00A0\u00A0\u00A0\nschema:datePublished<\/a> \"2008<\/span>\" ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"Leonhard Euler and his three \"great\" friends -- What is a polyhedron? -- The five perfect bodies -- The Pythagorean brotherhood and Plato\'s atomic theory -- Euclid and his elements -- Kepler\'s polyhedral universe -- Euler\'s gem -- Platonic solids, gold balls, Fullerenes, and geodesic domes -- Scooped by Descartes? -- Legendre gets it right -- A stroll through K\u00F6nigsberg -- Cauchy\'s flattened polyhedra -- Planar graphs, geoboards, and brussels sprouts -- It\'s a colorful world -- New problems and new proofs -- Rubber sheets, hollow doughnuts, and crazy bottles -- Are they the same, or are they different? -- A knotty problem -- Combing the hair on a coconut -- When topology controls geometry -- The topology of curvy surfaces -- Navigating in n dimensions -- Henri Poincar\u00E9 and the ascendance of topology -- The million-dollar question.<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"Leonhard Euler\'s polyhedron formula describes the structure of many objects--from soccer balls and gemstones to Buckminster Fuller\'s buildings and giant all-carbon molecules. Yet Euler\'s formula is so simple it can be explained to a child. Euler\'s Gem tells the illuminating story of this indispensable mathematical idea. From ancient Greek geometry to today\'s cutting-edge research, Euler\'s Gem celebrates the discovery of Euler\'s beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. In 1750, Euler observed that any polyhedron composed of V vertices, E edges.<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:exampleOfWork<\/a> <http:\/\/worldcat.org\/entity\/work\/id\/796249757<\/a>> ;\u00A0\u00A0\u00A0\nschema:genre<\/a> \"History<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:genre<\/a> \"Electronic books<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:inLanguage<\/a> \"en<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isSimilarTo<\/a> <http:\/\/www.worldcat.org\/oclc\/225091369<\/a>> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Euler\'s gem : the polyhedron formula and the birth of topology<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:productID<\/a> \"753980256<\/span>\" ;\u00A0\u00A0\u00A0\nschema:publication<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/753980256#PublicationEvent\/princeton_n_j_princeton_university_press_2008<\/a>> ;\u00A0\u00A0\u00A0\nschema:publisher<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/796249757#Agent\/princeton_university_press<\/a>> ; # Princeton University Press<\/span>\n\u00A0\u00A0\u00A0\nschema:url<\/a> <https:\/\/www.jstor.org\/stable\/10.2307\/j.ctt7sqb7<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <https:\/\/search.ebscohost.com\/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=375313<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/excerpts.cdn.overdrive.com\/FormatType-410\/1980-1\/D2A\/2B4\/75\/EulersGem9781400838561.epub<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/muse.jhu.edu\/books\/9781400838561\/<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <https:\/\/samples.overdrive.com\/?crid=D2A2B475-7D0D-4173-8FF3-B0BE7DE9700E&.epub-sample.overdrive.com<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/proquest.tech.safaribooksonline.de\/9781400838561<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <https:\/\/shu-primo.hosted.exlibrisgroup.com\/openurl\/44SHU\/44SHU_VU1?u.ignore_date_coverage=true&rft.mms_id=9914704002501<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/VH7QX3XE2P.search.serialssolutions.com\/?V=1.0&L=VH7QX3XE2P&S=JCs&C=TC0000536420&T=marc&tab=BOOKS<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> \"https:\/\/www.safaribooksonline.com\/library\/view\/-\/9781400838561\/?ar?orpq&email=^u<\/span>\" ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/site.ebrary.com\/id\/10480678<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <https:\/\/www.safaribooksonline.com\/library\/view\/\/9781400838561\/?ar<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> \"http:\/\/images.contentreserve.com\/ImageType-100\/1980-1\/{D2A2B475-7D0D-4173-8FF3-B0BE7DE9700E}Img100.jpg<\/span>\" ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/www.dawsonera.com\/abstract\/9781400838561<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> \"https:\/\/www.safaribooksonline.com\/library\/view\/title\/9781400838561\/?ar?orpq&email=^u<\/span>\" ;\u00A0\u00A0\u00A0\nschema:url<\/a> <https:\/\/www.overdrive.com\/search?q=D2A2B475-7D0D-4173-8FF3-B0BE7DE9700E<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <https:\/\/proquest.safaribooksonline.com\/9781400838561<\/a>> ;\u00A0\u00A0\u00A0\nschema:workExample<\/a> <http:\/\/worldcat.org\/isbn\/9781283129268<\/a>> ;\u00A0\u00A0\u00A0\nschema:workExample<\/a> <http:\/\/worldcat.org\/isbn\/9786613129260<\/a>> ;\u00A0\u00A0\u00A0\nschema:workExample<\/a> <http:\/\/worldcat.org\/isbn\/9781400838561<\/a>> ;\u00A0\u00A0\u00A0\numbel:isLike<\/a> <http:\/\/bnb.data.bl.uk\/id\/resource\/GBA888251<\/a>> ;\u00A0\u00A0\u00A0\nwdrs:describedby<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/753980256<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Related Entities<\/h3>\n
<http:\/\/dewey.info\/class\/514.09\/e23\/<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/796249757#Agent\/princeton_university_press<\/a>> # Princeton University Press<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:Agent<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Princeton University Press<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/796249757#Place\/princeton_n_j<\/a>> # Princeton, N.J.<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Princeton, N.J.<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/796249757#Topic\/algebraische_topologie<\/a>> # Algebraische Topologie<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Algebraische Topologie<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/796249757#Topic\/euler_poincare_charakteristik<\/a>> # Euler-Poincar\u00E9-Charakteristik<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Euler-Poincar\u00E9-Charakteristik<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/796249757#Topic\/mathematics_geometry_general<\/a>> # MATHEMATICS--Geometry--General<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"MATHEMATICS--Geometry--General<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/796249757#Topic\/mathematics_topology<\/a>> # MATHEMATICS--Topology<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"MATHEMATICS--Topology<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/796249757#Topic\/poliedros<\/a>> # Poliedros<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Poliedros<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/796249757#Topic\/polyeder<\/a>> # Polyeder<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Polyeder<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/796249757#Topic\/topologia<\/a>> # Topolog\u00EDa<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Topolog\u00EDa<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/796249757#Topic\/topology_history<\/a>> # Topology--History<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:hasPart<\/a> <http:\/\/id.loc.gov\/authorities\/subjects\/sh85136089<\/a>> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Topology--History<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.loc.gov\/vocabulary\/countries\/nju<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\ndcterms:identifier<\/a> \"nju<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.worldcat.org\/fast\/1070511<\/a>> # Polyhedra<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Polyhedra<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.worldcat.org\/fast\/1152692<\/a>> # Topology<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Topology<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/viaf.org\/viaf\/49049689<\/a>> # David Scott Richeson<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Richeson<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"David Scott<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"David S.<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"David Scott Richeson<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/isbn\/9781283129268<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:ProductModel<\/a> ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"1283129264<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"9781283129268<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/isbn\/9781400838561<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:ProductModel<\/a> ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"1400838568<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"9781400838561<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/isbn\/9786613129260<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:ProductModel<\/a> ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"6613129267<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"9786613129260<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/oclc\/225091369<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:CreativeWork<\/a> ;\u00A0\u00A0\u00A0\nrdfs:label<\/a> \"Euler\'s gem.<\/span>\" ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"Print version:<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isSimilarTo<\/a> <http:\/\/www.worldcat.org\/oclc\/753980256<\/a>> ; # Euler\'s gem : the polyhedron formula and the birth of topology<\/span>\n\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/title\/-\/oclc\/753980256<\/a>>\u00A0\u00A0\u00A0\u00A0a \ngenont:InformationResource<\/a>, genont:ContentTypeGenericResource<\/a> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/www.worldcat.org\/oclc\/753980256<\/a>> ; # Euler\'s gem : the polyhedron formula and the birth of topology<\/span>\n\u00A0\u00A0\u00A0\nschema:dateModified<\/a> \"2020-07-03<\/span>\" ;\u00A0\u00A0\u00A0\nvoid:inDataset<\/a> <http:\/\/purl.oclc.org\/dataset\/WorldCat<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/title\/-\/oclc\/753980256#PublicationEvent\/princeton_n_j_princeton_university_press_2008<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:PublicationEvent<\/a> ;\u00A0\u00A0\u00A0\nschema:location<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/796249757#Place\/princeton_n_j<\/a>> ; # Princeton, N.J.<\/span>\n\u00A0\u00A0\u00A0\nschema:organizer<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/796249757#Agent\/princeton_university_press<\/a>> ; # Princeton University Press<\/span>\n\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Content-negotiable representations<\/p>\n