The European Commission Atmospheric Observatory : 2017 report. (eBook, 2019) [WorldCat.org]
skip to content
The European Commission Atmospheric Observatory : 2017 report. Preview this item
ClosePreview this item
Checking...

The European Commission Atmospheric Observatory : 2017 report.

Author: P BergamaschiF CavalliA Dell'AcquaK DouglasI GodedAll authors
Publisher: Luxembourg : Publications Office of the European Union, 2019.
Series: EUR (Luxembourg. Online), 29638.
Edition/Format:   eBook : Document : International government publication : EnglishView all editions and formats
Summary:
Following the set-up of the greenhouse gas measurements in November 2016, the equipment for measuring short-lived pollutants and climate forcers was moved to the Atmospheric Observatory at the site of the historical EMEP-GAW site of the JRC in Ispra by July 1997. A comprehensive set of essential atmospheric variables have since then been measured at this single site to continue the assessment of the impact of  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: research report
Material Type: Document, Government publication, International government publication, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: P Bergamaschi; F Cavalli; A Dell'Acqua; K Douglas; I Goded; F Grassi; C Gruening; N R Jensen; F Lagler; G Manca; S Martins Dos Santos; M Matteucci; R Passarella; V Pedroni; J P Putaud; European Commission. Joint Research Centre.
ISBN: 9789279992841 9279992848
OCLC Number: 1111235499
Description: 1 online resource.
Series Title: EUR (Luxembourg. Online), 29638.

Abstract:

Following the set-up of the greenhouse gas measurements in November 2016, the equipment for measuring short-lived pollutants and climate forcers was moved to the Atmospheric Observatory at the site of the historical EMEP-GAW site of the JRC in Ispra by July 1997. A comprehensive set of essential atmospheric variables have since then been measured at this single site to continue the assessment of the impact of European policies and international conventions on air pollution and climate forcing that started in 1985. The variables we measure at the Atmospheric Observatory in Ispra include greenhouse gas concentrations (CO2, CH4, N2O, SF6), radon (222Rn) activity concentration, short-lived gaseous and particulate pollutant (CO, SO2, NO, NO2, O3, PM2.5 and its main ionic and carbonaceous constituents) concentrations, atmospheric particle micro-physical characteristics (number concentration and size distribution) and optical properties (light scattering and absorption in-situ, light scattering and extinction vertical profiles remotely), eutrophying and acidifying species (SO42-, NO3-, NH4+) wet deposition. On-line measurements data are available in real time at http://abc-is.jrc.ec.europa.eu/. Vegetation D atmosphere exchanges (CO2, O3, H2O and heat) are measured at our Mediterranean Forest Flux Station of San Rossore, backed up by meteorological and pedological measurements. All measurements are performed under international projects and programmes including ICOS (Integrated Carbon Observation System), ACTRIS (Aerosols, Clouds and Trace gases Research Infra-Structure), EMEP (co-operative Programme for Monitoring and Evaluation of the long range transmission of air pollutants in Europe) and GAW (Global Atmosphere Watch), each of which requires the use of standard methods and scales, and the participation in quality assurance activities. The JRC has a leading role in ACTRIS and EMEP regarding the quality assurance for carbonaceous aerosol measurements. Data obtained at Atmospheric Observatory are submitted to international open data bases (www.europe-fluxdata.eu, fluxnet.ornl.gov, www.ingos-infrastructure.eu, ACTRIS Data Portal) and can be freely downloaded from these web sites. The data we produce are used in European wide assessments, for model inputs and validation, and for calibrating satellite airborne sensors. The European Commission Atmospheric Observatory 2017 report presents the data produced during the past year in the context of the previous years of measurements. All the essential in-situ and remote sensing measurements scheduled for 2017 were regularly performed across the year, except for short periods needed for moving, calibrating, and maintaining the equipment. Greenhouse gas (GHG) measurements have been performed at the JRC Ispra site since October 2007. Minimum values of CH4, N2O and SF6 measured in Ispra under clean air conditions are close to marine background values, while CO2 mixing ratios can even be lower than the Mace Head baseline due to the continental biospheric CO2 sink. Deviations from baseline concentrations provide information about regional and larger scale European greenhouse gas sources. From our daytime measurements, we derived increasing trends in CO2 (+0.5% yr-1) and CH4 (+0.4% yr-1) between 2008 and 2017, and in N2O (+0.3% yr-1) between 2001 and 2017. ICOS-compliant GHG measurements from the 100 m high tower of our new Atmospheric Observatory in Ispra started in December 2016. While CO concentrations slightly decreased (-2%) in 2017 compared to 2016, the concentrations of other short-lived pollutants monitored at the Atmospheric Observatory (NO2, O3, atmospheric particulate matter) have all increased by about 5 to 15%. In contrast, NH4+, NO3-, and SO42- wet deposition decreased (between -15 and -30%), but the number of acid rain events jumped from 3 in 2016 to 8 in 2017. These observations can be at least in part explained by the weather conditions, 2017 being exceptionally dry compared both to 2016 and to the decadal 1990-2000 average. In general, 2017 did not break the general decreasing trend in atmospheric pollution observed in Ispra since 1986. A noticeable exception regards ozone (O3), whose concentrations have remained relatively high in 2017. The indicators for health and ecosystem safeguard have deteriorated since 2012 (2014 excluded) compared to the 2000's. It would be worth studying the geographical extent of this tendency across Europe to understand its origin. The long time series in O3 indices and PM related variables (particle light scattering, particle number and wintertime mass concentrations, ...) suggest that a break in the decreasing trend in air pollution observed over the past 3 decades occurred around year 2014. This was particularly dramatic for O3, whose indicators for vegetation and human safeguard reached levels barely or never observed at the JRC-Ispra site in the past. Regarding particulate pollution, increased mass and number concentrations could have adverse effects on health. However, the increase in visible light scattering seen over the recent years is not accompanied by a similar increase in light absorption. This "lightening" of the atmospheric aerosol means that the negative radiative forcing (climate cooling) potential of the atmospheric particles encountered in our area has started to increase again. These observed changes in the long-term trends of particulate and O3 pollution would of course need to be confirmed over several more years and at other observatories to have a wider scientific and policy-relevant significance. The atmosphere D vegetation exchange measurements at our Mediterranean forest flux station of San Rossore show that the pine tree forest is a net sink for CO2 (510 gC/m² absorbed in 2017). The sequence of alternate wet and dry years since 2013 (when the measurement site was moved 600 m inland) allows us to observe that the total annual precipitation amount is not a key factor for determining the annual carbon sequestration by this Mediterranean.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.