skip to content
From Frege to Gödel Preview this item
ClosePreview this item

From Frege to Gödel

Author: Jean van Heijenoort; G Frege
Publisher: Cambridge, Mass. : Harvard Univ. Pr., 1981.
Edition/Format:   Print book : English : 4. prView all editions and formats

Gathered together here are the fundamental texts of the great classical period in modern logic. A complete translation of Gottlob Frege's Begriffsschrift-which opened a great epoch in the history of  Read more...


(not yet rated) 0 with reviews - Be the first.

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...


Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: Jean van Heijenoort; G Frege
ISBN: 0674324498 9780674324497
OCLC Number: 256165246
Description: 664 Seiten
Contents: 1. Frege (1879). Begriffsschrift, a formula language, modeled upon that of arithmetic, for pure thought 2. Peano (1889). The principles of arithmetic, presented by a new method 3.Dedekind (1890a). Letter to Keferstein Burali-Forti (1897 and 1897a). A question on transfinite numbers and On well-ordered classes 4.Cantor (1899). Letter to Dedekind 5.Padoa (1900). Logical introduction to any deductive theory 6,Russell (1902). Letter to Frege 7.Frege (1902). Letter to Russell 8.Hilbert (1904). On the foundations of logic and arithmetic 9.Zermelo (1904). Proof that every set can be well-ordered 10.Richard (1905). The principles of mathematics and the problem of sets 11.Konig (1905a). On the foundations of set theory and the continuum problem 12.Russell (1908a). Mathematical logic as based on the theory of types 13.Zermelo (1908). A new proof of the possibility of a well-ordering 14.Zermelo (l908a). Investigations in the foundations of set theory I Whitehead and Russell (1910). Incomplete symbols: Descriptions 15.Wiener (1914). A simplification of the logic of relations 16.Lowenheim (1915). On possibilities in the calculus of relatives 17.Skolem (1920). Logico-combinatorial investigations in the satisfiability or provability of mathematical propositions: A simplified proof of a theorem by L. Lowenheim and generalizations of the 18.theorem 19.Post (1921). Introduction to a general theory of elementary propositions 20.Fraenkel (1922b). The notion "definite" and the independence of the axiom of choice 21.Skolem (1922). Some remarks on axiomatized set theory 22.Skolem (1923). The foundations of elementary arithmetic established by means of the recursive mode of thought, without the use of apparent variables ranging over infinite domains 23.Brouwer (1923b, 1954, and 1954a). On the significance of the principle of excluded middle in mathematics, especially in function theory, Addenda and corrigenda, and Further addenda and corrigenda von Neumann (1923). On the introduction of transfinite numbers Schonfinkel (1924). On the building blocks of mathematical logic filbert (1925). On the infinite von Neumann (1925). An axiomatization of set theory Kolmogorov (1925). On the principle of excluded middle Finsler (1926). Formal proofs and undecidability Brouwer (1927). On the domains of definition of functions filbert (1927). The foundations of mathematics Weyl (1927). Comments on Hilbert's second lecture on the foundations of mathematics Bernays (1927). Appendix to Hilbert's lecture "The foundations of mathematics" Brouwer (1927a). Intuitionistic reflections on formalism Ackermann (1928). On filbert's construction of the real numbers Skolem (1928). On mathematical logic Herbrand (1930). Investigations in proof theory: The properties of true propositions Godel (l930a). The completeness of the axioms of the functional calculus of logic Godel (1930b, 1931, and l931a). Some metamathematical results on completeness and consistency, On formally undecidable propositions of Principia mathematica and related systems I, and On completeness and consistency Herbrand (1931b). On the consistency of arithmetic References Index
Responsibility: Jean van Heijenoort.


Editorial reviews

Publisher Synopsis

It is difficult to describe this book without praising it...[From Frege to Godel] is, in effect, the record of an important chapter in the history of thought. No serious student of logic or Read more...

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...


Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data

Primary Entity

<> # From Frege to Gödel
    a schema:Book, schema:CreativeWork ;
    library:oclcnum "256165246" ;
    library:placeOfPublication <> ; # Cambridge, Mass.
    library:placeOfPublication <> ;
    schema:bookEdition "4. pr." ;
    schema:bookFormat bgn:PrintBook ;
    schema:contributor <> ; # G. Frege
    schema:creator <> ; # Jean van Heijenoort
    schema:datePublished "1981" ;
    schema:exampleOfWork <> ;
    schema:inLanguage "en" ;
    schema:name "From Frege to Gödel" ;
    schema:productID "256165246" ;
    schema:publication <> ;
    schema:publisher <> ; # Harvard Univ. Pr.
    schema:url <> ;
    schema:workExample <> ;
    wdrs:describedby <> ;

Related Entities

<> # Harvard Univ. Pr.
    a bgn:Agent ;
    schema:name "Harvard Univ. Pr." ;

<> # Cambridge, Mass.
    a schema:Place ;
    schema:name "Cambridge, Mass." ;

<> # G. Frege
    a schema:Person ;
    schema:familyName "Frege" ;
    schema:givenName "G." ;
    schema:name "G. Frege" ;

<> # Jean van Heijenoort
    a schema:Person ;
    schema:familyName "Heijenoort" ;
    schema:givenName "Jean van" ;
    schema:name "Jean van Heijenoort" ;

    a schema:ProductModel ;
    schema:isbn "0674324498" ;
    schema:isbn "9780674324497" ;

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.