## Find a copy online

### Links to this item

## Find a copy in the library

Finding libraries that hold this item...

## Details

Genre/Form: | Electronic books |
---|---|

Additional Physical Format: | Printed edition: |

Material Type: | Document, Internet resource |

Document Type: | Internet Resource, Computer File |

All Authors / Contributors: |
Manfred Leopold Einsiedler; Thomas Ward |

ISBN: | 9783319585406 3319585401 |

OCLC Number: | 1013954149 |

Description: | 1 online resource (xiv, 614 pages) : illustrations |

Contents: | Motivation -- Norms and Banach Spaces -- Hilbert Spaces, Fourier Series, Unitary Representations -- Uniform Boundedness and Open Mapping Theorem -- Sobolev Spaces and Dirichlet's Boundary Problem -- Compact Self-Adjoint Operators, Laplace Eigenfunctions -- Dual Spaces -- Locally Convex Vector Spaces -- Unitary Operators and Flows, Fourier Transform -- Locally Compact Groups, Amenability, Property (T) -- Banach Algebras and the Spectrum -- Spectral Theory and Functional Calculus -- Self-Adjoint and Symmetric Operators -- The Prime Number Theorem -- Appendix A: Set Theory and Topology -- Appendix B: Measure Theory -- Hints for Selected Problems -- Notes. |

Series Title: | Graduate texts in mathematics, 276. |

Responsibility: | Manfred Einsiedler, Thomas Ward. |

### Abstract:

## Reviews

*Editorial reviews*

Publisher Synopsis

"All chapters end with a very useful list of additional topics and suggestions for further reading. The book also contains an appendix on set theory and topology, another one on measure theory ... . The book is carefully written and provides an interesting introduction to functional analysis with a wealth of both classical and more recent applications." (Michael M. Neumann, Mathematical Reviews, July, 2018)"This is an attractive new textbook in functional analysis, aimed at ... graduate students. ... the large amount of material covered in this book ... as well its overall readability, makes it useful as a reference as well as a potential graduate textbook. If you like functional analysis, teach it, or use it in your work, this book certainly merits a careful look." (Mark Hunacek, MAA Reviews, January, 2018)."The present book is different from the usual textbooks on functional analysis: it does not only cover the basic material, but also a number of advanced topics which cannot be found in many other books on the subject. ... The text is suitable for self-study as well as for the preparation of lectures and seminars. ... this is a highly recommendable book for students and researchers alike who are interested in functional analysis and its broad applications." (Jan-David Hardtke, zbMATH 1387.46001, 2018) Read more...

*User-contributed reviews*