skip to content
Fundamentals of convex analysis Preview this item
ClosePreview this item
Checking...

Fundamentals of convex analysis

Author: Jean-Baptiste Hiriart Urruty; Claude Lemaréchal
Publisher: Berlin : Springer, ©2001.
Series: Grundlehren text editions.
Edition/Format:   Print book : EnglishView all editions and formats
Summary:

This book is an abridged version of the two volumes "Convex Analysis and Minimization Algorithms I and II" (Grundlehren der mathematischen Wissenschaften Vol. It presents an introduction to the basic  Read more...

Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: Jean-Baptiste Hiriart Urruty; Claude Lemaréchal
ISBN: 3540422056 9783540422051
OCLC Number: 758194117
Description: x, 259 p. : il.
Contents: Foreword 0. Introduction: Notation, Elementary Results 1 Come Facts About Lower and Upper Bounds 2 The Set of Extended Real Numbers 3 Linear and Bilinear Algebra 4 Differentiation in a Euclidean Space 5 Set-Valued Analysis 6 Recalls on Convex Functions of the Real Variable Exercises A. Convex Sets 1. Generalities 1.1 Definitions and First Examples 1.2 Convexity-Preserving Operations on Sets 1.3 Convex Combinations and Convex Hulls 1.4 Closed Convex Sets and Hulls 2. Convex Sets Attached to a Convex Set 1.1 The Relative Interior 2.2 The Asymptotic Cone 2.3 Extreme Points 2.4 Exposed Faces 3. Projection onto Closed Convex Sets 3.1 The Projection Operator 3.2 Projection onto a Closed Convex Cone 4. Separation and Applications 4.1 Separation Between Convex Sets 4.2 First Consequences of the Separation Properties - Existence of Supporting Hyperplanes - Outer Description of Closed Convex Sets - Proof of Minkowski's Theorem - Bipolar of a Convex Cone 4.3 The Lemma of Minkowski-Farkas 5. Conical Approximations of Convex Sets 5.1 Convenient Definitions of Tangent Cones 5.2 The Tangent and Normal Cones to a Convex Set 5.3 Some Properties of Tangent and Normal Cones Exercises B. Convex Functions 1. Basic Definitions and Examples 1.1 The Definitions of a Convex Function 1.2 Special Convex Functions: Affinity and Closedness - Linear and Affine Functions - Closed Convex Functions - Outer Construction of Closed Convex Functions 1.3 First Examples 2. Functional Operations Preserving Convexity 2.1 Operations Preserving Closedness 2.2 Dilations and Perspectives of a Function 2.3 Infimal Convolution 2.4 Image of a Functions Under a Linear Mapping 2.5 Convex Hull and Closed Convex Hull of a Function 3. Local and Global Behaviour of a Convex Function 3.1 Continuity Properties 3.2 Behaviour at Infinity 4. Fist- and Second-Order Differentiation 4.1 Differentiable Convex Functions 4.2 Nondifferentiable Convex Functions 4.3 Second-Order Differentiation Exercises C. Sublinearity and Support Functions 1. Sublinear Functions 1.1 Definitions and First Properties 1.2 Some Examples 1.3 The Convex Cone of All closed Sublinear Functions 2. The Support Function of a Nonempty Set 2.1 Definitions, Interpretations 2.2 Basic Properties 2.3 Examples 3. Correspondence Between Convex Sets and Sublinear Functions 3.1 The Fundamental Correspondence 3.2 Example: Norms and Their Duals, Polarity 3.3 Calculus with Support Functions 3.4 Example: Support Functions of Closed Convex Polyhedra Exercises D. Subdifferentials of Finite Convex Functions 1. The Subdifferential: Definitions and Interpretations 1.1 First Definition: Directional Derivatives 1.2 Second Definition: Minorization by Affine Functions 1.3 Geometric Constructions and Interpretations 2. Local Properties of the Subdifferential 2.1 First-Order Developments 2.2 Minimality conditions 2.3 Mean-Value Theorems 3. First Examples 4. Calculus Rules with Subdifferentials 4.1 Positive combinations of Functions 4.2 Pre-Compositions with an Affine Mapping 4.3 Post-composition with an Increasing Convex Functions of Several Variables 4.4 Supremum of Convex Functions 4.5 Image of a Functions Under a Linear Mapping 5. Further Examples 5.1 Largest Eigenvaule of a Symmetric Matrix 5.2 Nested Optimization 5.3 Best Approximation of a Continuous Function on a Compact Interval 6. The Subdifferential as a Multifunction 6.1 Monotonicity Properties of Subdifferential 6.2 Continuity Properties of the Subdifferential 6.3 Subdifferentials and Limits of Subgradients Exercises E. Conjugacy in Convex Analysis 1. The Convex Conjugate of a Function 1.1 Definition and First Examples 1.2 Interpretations 1.3 First Properties - Elementary Calculus Rules - The Biconjugate of a Function - Conjugacy and Coercivity 1.4 Subdifferntials of Extended-Valued Functions 2. Calculus Rules on the Conjugacy Operation 2.1 Image of a Function Under a Linear Mapping 2.2 Pre-Composition with an Affine Mapping 2.3 Sum of Two Functions 2.4 Infima and Suprema 2.5 Post-Composition with an Increasing Convex Function 3. Various Examples 3.1 The Cramer Transformation 3.2 The Conjugate of convex Partially Quadratic Functions 3.3 Polyhedral Functions 4. Differentiability of a Conjugate Function 4.1 Fist-Order Differentiability 4.2 Lipschitz Continuity of the Gradient Mapping Exercises Bibliographical Comments References Index
Series Title: Grundlehren text editions.
Responsibility: Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal.
More information:

Reviews

Editorial reviews

Publisher Synopsis

From the reviews of the first edition: "...This book is an abridged version of the book "Convex Analysis and Minimization Algorithms" (shortly CAMA) written in two volumes by the same authors... . Read more...

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/758194117> # Fundamentals of convex analysis
    a schema:CreativeWork, schema:Book ;
    library:oclcnum "758194117" ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/25684432#Place/berlin> ; # Berlin
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/gw> ;
    schema:about <http://dewey.info/class/515.8/e21/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/25684432#Topic/funciones_convexas> ; # Funciones convexas
    schema:about <http://experiment.worldcat.org/entity/work/data/25684432#Topic/conjuntos_convexos> ; # Conjuntos convexos
    schema:about <http://experiment.worldcat.org/entity/work/data/25684432#Topic/analisis_matematico> ; # Análisis matemático
    schema:bookFormat bgn:PrintBook ;
    schema:contributor <http://viaf.org/viaf/109523625> ; # Claude Lemaréchal
    schema:copyrightYear "2001" ;
    schema:creator <http://viaf.org/viaf/84543316> ; # Jean-Baptiste Hiriart Urruty
    schema:datePublished "2001" ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/25684432> ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/25684432#Series/grundlehren_text_editions> ; # Grundlehren text editions.
    schema:name "Fundamentals of convex analysis" ;
    schema:numberOfPages "259" ;
    schema:productID "758194117" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/758194117#PublicationEvent/berlin_springer_2001> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/25684432#Agent/springer> ; # Springer
    schema:url <http://catdir.loc.gov/catdir/enhancements/fy0813/2001053271-t.html> ;
    schema:workExample <http://worldcat.org/isbn/9783540422051> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/758194117> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/25684432#Series/grundlehren_text_editions> # Grundlehren text editions.
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/758194117> ; # Fundamentals of convex analysis
    schema:name "Grundlehren text editions." ;
    schema:name "Grundlehren text editions" ;
    .

<http://experiment.worldcat.org/entity/work/data/25684432#Topic/analisis_matematico> # Análisis matemático
    a schema:Intangible ;
    schema:name "Análisis matemático" ;
    .

<http://experiment.worldcat.org/entity/work/data/25684432#Topic/conjuntos_convexos> # Conjuntos convexos
    a schema:Intangible ;
    schema:name "Conjuntos convexos" ;
    .

<http://experiment.worldcat.org/entity/work/data/25684432#Topic/funciones_convexas> # Funciones convexas
    a schema:Intangible ;
    schema:name "Funciones convexas" ;
    .

<http://viaf.org/viaf/109523625> # Claude Lemaréchal
    a schema:Person ;
    schema:familyName "Lemaréchal" ;
    schema:givenName "Claude" ;
    schema:name "Claude Lemaréchal" ;
    .

<http://viaf.org/viaf/84543316> # Jean-Baptiste Hiriart Urruty
    a schema:Person ;
    schema:birthDate "1949" ;
    schema:deathDate "" ;
    schema:familyName "Hiriart Urruty" ;
    schema:givenName "Jean-Baptiste" ;
    schema:name "Jean-Baptiste Hiriart Urruty" ;
    .

<http://worldcat.org/isbn/9783540422051>
    a schema:ProductModel ;
    schema:isbn "3540422056" ;
    schema:isbn "9783540422051" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.