Front cover image for Gas lasers

Gas lasers

Print Book, English, 2007
CRC, Boca Raton, Fla., 2007
556 s
9780849335532, 0849335531
475200887
Principles of Gas Lasers
1(38)
Krzysztof M. Abramski
Edward F. Plinski
Introduction
2(2)
Gas Media
4(5)
Ionized Gas
5(1)
Interactions
5(1)
Free Electrons
5(2)
Electron Events in Discharge
7(2)
Spectroscopy of Gases
9(6)
Quantized States of Atoms
9(2)
Quantized States of Molecules
11(1)
Vibrational States of Diatomic Molecules
11(2)
Rotational States of a Diatomic Molecule
13(2)
Spectral Lines
15(4)
Natural Broadening
16(1)
Collisional (Pressure) Broadening
16(1)
Doppler Broadening
17(2)
Gain Conditions
19(3)
Laser Action---A Simple Model
22(4)
Empty Cavity Model
23(1)
Laser Action
24(1)
Schawlow--Townes Formula
25(1)
Multimode Operation of Lasers
25(1)
Pulse Operation
25(1)
Laser Resonators
26(1)
Pumping Techniques
27(8)
DC Discharge
28(2)
Pulse Discharge Excitation
30(4)
RF Discharge Excitation
34(1)
Microwave Excitation
34(1)
Gas-Dynamic Excitation
35(1)
Optical Pumping
35(1)
Cooling Systems
35(4)
Diffusion Cooling
36(1)
Flowing Systems
37(1)
References
37(2)
Fluid Dynamics
39(122)
Anatoly S. Boreysho
Andrey V. Savin
Victor M. Malkov
CW Supersonic Gas Lasers
40(8)
Introduction
40(1)
Supersonic Lasers' Main Structural Units (GDL, DF(HF), COIL)
40(2)
Special Features of Supersonic Lasers
42(6)
Flow Structure in the Laser Cavity after MNB
48(37)
Introduction
48(1)
Blade Nozzle Bank and Two-Dimensional Flow Pattern
48(1)
Blade Bank Models
48(1)
Flow Pattern
48(3)
Average Parameter Distributions in a Flow
51(12)
Impact of Real Blade Nozzle Bank Assembly Defects on Flow Gas Dynamics
63(5)
Three-Dimensional Structure of Flow after SNB
68(1)
Models and Their Geometry
68(2)
Pressure Field Measurement Results---Overall Pattern
70(4)
Base Pressure and Pressure Recovery in the Channel Located behind the Screen Banks
74(4)
Flow Pulsation Characteristics behind the Nozzle Banks
78(7)
Optical Quality of Flow in the Laser Cavity after MNB
85(26)
Introduction
85(1)
Objectives of Aero-Optics for SGL Lasers
86(6)
On Experimental Methods of Optical Quality Research
92(2)
Asymptotic Estimation of the Radiation Scattered Portion Behavior on Flow Probing behind the BNB
94(1)
Optical Quality of Supersonic Flows behind the BNB
95(5)
Optical Quality of Supersonic Flows behind the SNB
100(11)
Problem of Mixing in the Nozzles of Supersonic Chemical Lasers
111(10)
Introduction
111(1)
Mixing Process Features in the Chemical Laser Case
111(4)
Injection into the Cross-Flow in the Narrow Channel Conditions
115(6)
Resonators of High-Power SGL Lasers
121(11)
Classifications of the Powerful Laser Resonators
121(2)
Large-Scale Nonuniformities' Influence on Unstable Resonator Operation
123(4)
Small-Scale Nonuniformities' Influence on Unstable Resonator Operation
127(4)
Resonator Design
131(1)
Pressure Recovery Systems for Chemical SGL
132(29)
General Information
132(2)
Diffuser
134(4)
Supersonic Ejector
138(2)
Vapor-Gas Generator
140(2)
Heat Exchanger
142(1)
Problem of Operation of Laser with PRS
143(1)
Necessary Conditions for PRS Start
143(2)
Start of Complex Channel
145(5)
Some Technical Problems in Operation of Lasers with PRS
150(4)
References
154(7)
Optical Resonators
161(22)
Anatoly P. Napartovich
Introduction
161(1)
Basic Equations and Methodologies
162(7)
Two-Mirror Resonators
162(1)
Bare Resonators
162(2)
Loaded Resonators
164(3)
Compound Resonators
167(2)
Types of Resonators
169(6)
Stable Resonators with Spherical Optics
170(1)
Unstable Resonators with Spherical Optics
171(1)
Specific Classes of Resonators
172(3)
Gain Saturation and Mode-Medium Interaction Effects
175(8)
References
179(4)
Electric Circuits
183(18)
Vladimir V. Khukharev
General Aspect of Ionized Gas Discharge
183(5)
Self-Sustained vs. Non-Self-Sustained Discharges
188(2)
Pulsing Circuits
190(2)
Preionization Techniques
192(4)
Radio-Frequency Excitation Circuits vs. DC Glow Discharge
196(5)
References
198(3)
Electric Discharge CO Lasers
201(38)
Andrey A. Ionin
Introduction
201(1)
Historical Remarks
202(1)
Mechanism of Formation of Inversion Population in Electric Discharge CO Laser
203(6)
Small-Signal Gain and CO Laser Spectrum
209(5)
Pulsed Mode of CO Laser Operation
214(1)
Theoretical Model of Electric Discharge CO Laser
215(5)
Experimental Research and Development of Fundamental Band CO Lasers
220(8)
Research and Development of Overtone CO Lasers
228(11)
References
230(9)
DC-Excited Continuous-Wave Conventional and RF-Excited Waveguide CO2 Lasers
239(48)
Edward F. Plinski
Krzysztof M. Abramski
Introduction
240(47)
Carbon Dioxide Molecule
240(2)
Regular, Sequence, and Hot Transitions
242(2)
Isotope Spectral Displacement
244(1)
Basic Spectral and Gain Parameters of CO2 Laser Media
244(1)
Sealed-Off Conditions of a CO2 Laser
245(1)
The CO2 Laser Structure---Mechanical, Electrical, and Optical
246(4)
Tuning and Single-Frequency Operation
250(2)
Frequency Stabilization of a CO2 Laser
252(5)
RF-Excited Waveguide CO2 Laser
257(1)
Waveguide Modes in Rectangular Symmetry
258(1)
RF-Excited Discharge
259(4)
Equivalent Circuitry
263(4)
Basic Data of Waveguide CO2 Lasers
267(1)
RF-Excited Waveguide CO2 Laser Arrays
268(1)
RF-Excited Slab-Waveguide CO2 Lasers
269(1)
Slabs with Sidewalls
270(2)
Slabs without Sidewalls---Large-Area Lasers
272(1)
Sealed-Off Diffusion-Cooled RF Transversally Excited All-Metal CO2 Lasers
273(1)
Temperature Distributions
273(3)
Dynamics of the CO2 Laser
276(2)
Pulsed RF Excitation of Waveguide and Slab-Waveguide Lasers
278(1)
DC or RF Excitation?
278(2)
Microwave Excitation of CO2 Lasers
280(1)
Some Practical Formulas---Optical Properties of CO2:N2:He Mixtures
281(2)
References
283(4)
High-Power Electric CO2 Lasers
287(54)
Alan E. Hill
Introduction
287(54)
Introduction and Historical Background
288(1)
Technical Discussion: Early Developments
288(5)
Basic Theory of Power Extraction
293(2)
Maximizing Power or Efficiency
295(1)
Optimal Use of Compressible Gas Dynamic Effects
296(4)
Optimal Cavity Design
300(3)
Cavity Design Examples Pertaining to Continuous Transsonic Flow Axial Lasers
303(3)
Some Pressure Scaling Considerations
306(1)
Production and Control of Very Uniform, Large-Volume, High-Pressure Plasmas with Large Specific Power Input
306(5)
First 20 KW Class Compact Laser
311(3)
Alternative Means of Large-Volume, High-Pressure Plasma Stabilization
314(2)
TEA Laser Development
316(4)
Electron Beam Ionized CO2 Lasers
320(3)
Controlled Avalanche Ionization Lasers
323(1)
Compact Giant Single-Pulsed CO2 Lasers
323(1)
Compact, High-Repetition Rate CO2 Lasers
324(1)
Compact, Continuous, Controlled Avalanche Ionized CO2 Lasers
325(3)
Special Problems Associated with Very High Continuous Power
328(5)
Mode--Media Instabilities
333(4)
Suggested Methodologies to Eliminate Mode--Media Interaction Instabilities
337(1)
Promising Areas of Development for the Future
338(1)
References
339(2)
Hydrogen and Deuterium Fluoride Chemical Lasers
341(28)
Wilhelm H. Behrens
Peter D. Lohn
Overview
341(4)
Physics and Chemistry of Combustion Driven Continuous Wave Chemical Lasers
345(4)
Fluid Mechanics of Chemical Lasers
349(9)
Combustor Flow
350(1)
Nozzle Flow (Laser Cavity Injectors) and Lasing Cavity Flow
350(6)
Pressure Recovery
356(2)
Modeling of Chemical Lasers
358(11)
Introduction
358(2)
Equations for Reacting, Lasing Flow
360(2)
Chemical Reactions
362(1)
Lasing Equations
362(2)
Resonator Modeling
364(1)
Simplified Fluid Dynamics and Detailed Resonator Models
364(1)
Simplified Optics and Detailed Flow Models
364(1)
Coupled Detailed Models
365(1)
References
366(3)
Excimer and Exciplex Lasers
369(44)
Sergey I. Yakovlenko
Introduction
370(1)
Rare-Gas Dimer Lasers
371(8)
Theoretical Aspects
371(1)
Inversion Condition
371(1)
First, Second, and Third Continua in Rare Gases
372(1)
Bandwidth
373(1)
Threshold Characteristics
373(2)
Simplest Model of the Active Medium
375(2)
Quasi-Steady Regime and Afterglow
377(1)
Experiments
377(1)
Experiments on Liquid Xenon
377(1)
Principal Conditions in Experiments on High-Pressure Gases
378(1)
Factors Causing Suppression of Lasing
378(1)
Afterglow
378(1)
Lasing in a Discharge
379(1)
Exciplex Lasers
379(22)
The General Properties
379(1)
Start of Rare-Halide Lasers
379(1)
The Structure of Potential Curves
380(1)
Lasing Threshold
381(2)
On the Modeling of the Active Medium
383(1)
Pumping with a Hard Ionizer
383(2)
Discharge Pumping
385(1)
Description of the Kinetics of the Active Medium
385(2)
Specific Features of the Kinetics of Exciplex Lasers
387(1)
A KrF Laser (248 nm)
387(4)
An XeCl Laser (308 nm)
391(3)
An ArF Laser (193 nm)
394(3)
An XeF Laser (351, 353 nm)
397(2)
Other Types of Exciplex Lasers Using Halides of Rare Gases
399(2)
Pulse Repetition Discharge Exciplex Lasers
401(1)
KrF, ArF Lasers
401(1)
XeCl Lasers
401(1)
Conclusion
402(11)
References
402(11)
Atomic Iodine Lasers
413(36)
Steven J. Davis
William E. McDermott
Michael C. Heaven
Introduction
413(2)
Overview of Iodine Lasers
413(2)
Basic Physics of Atomic Iodine Lasers
415(1)
Photolytic Iodine Lasers
416(3)
Chemical Oxygen Iodine Lasers
419(11)
Introduction
419(2)
History
421(1)
Chemistry of Singlet Oxygen Production
421(1)
Theory and Modeling of O2(1ΔG) Generators
422(1)
Iodine Dissociation Kinetics
423(4)
Laser Power
427(1)
Novel COIL Devices
427(3)
COIL Diagnostics
430(1)
Singlet Oxygen Yield
431(1)
Applications
432(1)
The All Gas-Phase Iodine Laser
432(4)
Introduction
432(1)
Demonstration of I Atom Inversion and Laser Oscillation
433(3)
Electric Oxygen Iodine Lasers
436(2)
Summary
438(11)
Acknowledgments
438(1)
References
438(11)
Metal Vapor Lasers
449(48)
Nikola V. Sabotinov
Introduction
450(1)
MVLs, General Points
451(7)
History of the Development of MVLs
451(1)
Methods for Obtaining Metal Atoms in the Gas Phase
452(1)
Vaporization
452(1)
Dissociation of Metal Chemical Compounds
453(1)
Cathode Sputtering
453(1)
Electric Gas-Discharges Used for Excitation in MVLs
453(1)
Stationary PC Discharges
454(1)
Pulsed PC Discharges
454(1)
Hollow Cathode Discharges
455(1)
Transverse RF Discharges
456(1)
Main Excitation Processes in the Plasma of MVLs
456(1)
Electron Collisions
457(1)
Charge Transfer and Penning Ionization
457(1)
Recombination of Doubly Charged Ions
458(1)
Types of MVLs
458(11)
MVLs on Self-Terminating Atomic and Ion Transitions
458(3)
CW Metal Vapor Ion Lasers
461(5)
Recombination MVLs
466(3)
Copper Lasers
469(12)
Introduction
469(1)
Principle of Operation
469(1)
Types of Copper Lasers
470(1)
The CVL
471(1)
The CuBrVL
471(1)
The CuHyBrID
471(1)
The KE-CVL
472(1)
The CVL
473(1)
Gas-Discharge Tubes for the Copper Laser
473(2)
Electric Power Supply Schemas for CVLs
475(1)
The CuBrVL
476(1)
Physical Processes in the CuBrVL
476(1)
CuBrVL Gas-Discharge Tubes
477(1)
Main Features of the CuBrVL
478(1)
Applications of Copper Lasers
478(1)
Precision Processing of Materials
479(1)
Laser Isotope Separation
479(1)
Medical Applications
480(1)
Laser Projection Microscope
480(1)
Companies Producing Copper Lasers
480(1)
The He--Cd Laser
481(8)
Laser Action with Cadmium Ions
481(1)
Historical Information about the He--Cd Laser
481(1)
Energy Level Diagram for the Cadmium Ion
481(1)
The Cataphoretic He--Cd Laser
481(2)
Lasing Mechanisms for the 441.6 and 325.0 nm Lines
483(1)
Designs of the He--Cd Cataphoretic Laser
483(2)
The Hollow Cathode He--Cd Ion Laser
485(1)
Mechanism of Laser Oscillation on the Cadmium Ion Lines in a Hollow Cathode
485(1)
Constructive Features of the HC He--Cd Laser
486(1)
The RF ``White'' He--Cd Laser
487(1)
Applications of the He--Cd Lasers and Company Producers
488(1)
Applications of the He--Cd Cataphoretic Laser
488(1)
Applications of the ``White'' He--Cd Laser
488(1)
Companies Producing He--Cd Lasers
488(1)
UV Copper Ion Lasers
489(8)
Introduction
489(1)
Laser Oscillation on Ion Transitions in Copper, Gold, and Silver
489(1)
The Copper Ion Laser
490(1)
Principles of Laser Generation
490(1)
Copper Ion Laser with a Slotted HC
491(1)
Other Discharge Solutions for Generation of UV Copper Ion Laser Lines
492(1)
Applications and Production of Metal Vapor Ion Lasers Generating in the Deep UV
492(1)
References
493(4)
Other Gas Lasers
497(44)
Krzysztof M Abramski
Edward F. Plinski
Introduction
497(1)
He--Ne Lasers
498(9)
Constructions and Technology
498(2)
Physics of He--Ne Lasers
500(1)
Resonators in He--Ne Lasers; Mode Structure and Spectrum of Radiation
501(3)
Frequency Stabilization of He--Ne Lasers
504(3)
Ion Lasers
507(12)
Construction and Supply System of Ion Lasers
508(2)
Physics of Ion Lasers---Ar Ion Lasers
510(6)
Kr Ion Lasers
516(1)
White Ar--Kr Ion Lasers
517(1)
Applications of Ion Lasers
518(1)
FIR Lasers
519(12)
FIR Molecules
519(3)
Line Assignment
522(2)
FIR Laser Radiation
524(2)
Representative FIR Transitions
526(1)
FIR Laser Constructions
527(4)
Applications of FIR Lasers
531(1)
The Submillimeter HCN Laser
531(2)
Xe Laser
533(2)
The N2 Laser
535(6)
References
537(4)
Index541