skip to content
Geometry with an introduction to cosmic topology Preview this item
ClosePreview this item
Checking...

Geometry with an introduction to cosmic topology

Author: Michael P Hitchman
Publisher: Sudbury, Mass. : Jones and Bartlett Publishers, ©2009.
Series: Jones and Bartlett Publishers series in mathematics., Geometry.
Edition/Format:   Print book : EnglishView all editions and formats
Summary:
"Geometry with an Introduction to Cosmic Topology is motivated by questions that have ignited the imagination of stargazers since antiquity. What is the shape of the universe? Does the universe have an edge? Is it infinitely big? Dr. Hitchman aims to clarify this fascinating area of mathematics and focuses on the mathematical tools used to investigate the shape of the universe. The text follows the Erlangen Program,  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: Michael P Hitchman
ISBN: 9780763754570 0763754579
OCLC Number: 244068212
Description: xiii, 238 pages : illustrations (some color) ; 24 cm.
Contents: An invitation to geometry --
The plane and complex numbers --
Transformations --
Geometry --
Hyperbolic geometry --
Elliptic geometry --
Geometry on surfaces --
Cosmic topology.
Series Title: Jones and Bartlett Publishers series in mathematics., Geometry.
Responsibility: Michael P. Hitchman.
More information:

Abstract:

"Geometry with an Introduction to Cosmic Topology is motivated by questions that have ignited the imagination of stargazers since antiquity. What is the shape of the universe? Does the universe have an edge? Is it infinitely big? Dr. Hitchman aims to clarify this fascinating area of mathematics and focuses on the mathematical tools used to investigate the shape of the universe. The text follows the Erlangen Program, which develops geometry in terms of a space and a group of transformations of that space. This approach to non-Euclidean geometry provides excellent material by which students can learn the more sophisticated modes of thinking necessary in upper-division mathematics courses."--Jacket.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


\n\n

Primary Entity<\/h3>\n
<http:\/\/www.worldcat.org\/oclc\/244068212<\/a>> # Geometry with an introduction to cosmic topology<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Book<\/a>, schema:CreativeWork<\/a> ;\u00A0\u00A0\u00A0\nlibrary:oclcnum<\/a> \"244068212<\/span>\" ;\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/id.loc.gov\/vocabulary\/countries\/mau<\/a>> ;\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/141926028#Place\/sudbury_mass<\/a>> ; # Sudbury, Mass.<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/141926028#Topic\/nichteuklidische_geometrie<\/a>> ; # Nichteuklidische Geometrie<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/dewey.info\/class\/516\/e22\/<\/a>> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/id.worldcat.org\/fast\/880553<\/a>> ; # Cosmic magnetic fields<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/id.worldcat.org\/fast\/940864<\/a>> ; # Geometry<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/id.worldcat.org\/fast\/1152692<\/a>> ; # Topology<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/141926028#Topic\/geometrie<\/a>> ; # Geometrie<\/span>\n\u00A0\u00A0\u00A0\nschema:bookFormat<\/a> bgn:PrintBook<\/a> ;\u00A0\u00A0\u00A0\nschema:copyrightYear<\/a> \"2009<\/span>\" ;\u00A0\u00A0\u00A0\nschema:creator<\/a> <http:\/\/viaf.org\/viaf\/278668748<\/a>> ; # Michael P. Hitchman<\/span>\n\u00A0\u00A0\u00A0\nschema:datePublished<\/a> \"2009<\/span>\" ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"An invitation to geometry -- The plane and complex numbers -- Transformations -- Geometry -- Hyperbolic geometry -- Elliptic geometry -- Geometry on surfaces -- Cosmic topology.<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:exampleOfWork<\/a> <http:\/\/worldcat.org\/entity\/work\/id\/141926028<\/a>> ;\u00A0\u00A0\u00A0\nschema:inLanguage<\/a> \"en<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isPartOf<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/141926028#Series\/the_jones_and_bartlett_publishers_series_in_mathematics_geometry<\/a>> ; # The Jones and Bartlett Publishers series in mathematics. Geometry<\/span>\n\u00A0\u00A0\u00A0\nschema:isPartOf<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/141926028#Series\/jones_and_bartlett_publishers_series_in_mathematics<\/a>> ; # Jones and Bartlett Publishers series in mathematics.<\/span>\n\u00A0\u00A0\u00A0\nschema:name<\/a> \"Geometry with an introduction to cosmic topology<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:productID<\/a> \"244068212<\/span>\" ;\u00A0\u00A0\u00A0\nschema:publication<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/244068212#PublicationEvent\/sudbury_mass_jones_and_bartlett_publishers_2009<\/a>> ;\u00A0\u00A0\u00A0\nschema:publisher<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/141926028#Agent\/jones_and_bartlett_publishers<\/a>> ; # Jones and Bartlett Publishers<\/span>\n\u00A0\u00A0\u00A0\nschema:reviews<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/244068212#Review\/-2128955437<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/catdir.loc.gov\/catdir\/toc\/ecip0827\/2008038313.html<\/a>> ;\u00A0\u00A0\u00A0\nschema:workExample<\/a> <http:\/\/worldcat.org\/isbn\/9780763754570<\/a>> ;\u00A0\u00A0\u00A0\nwdrs:describedby<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/244068212<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Related Entities<\/h3>\n
<http:\/\/dewey.info\/class\/516\/e22\/<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/141926028#Agent\/jones_and_bartlett_publishers<\/a>> # Jones and Bartlett Publishers<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:Agent<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Jones and Bartlett Publishers<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/141926028#Place\/sudbury_mass<\/a>> # Sudbury, Mass.<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Sudbury, Mass.<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/141926028#Series\/jones_and_bartlett_publishers_series_in_mathematics<\/a>> # Jones and Bartlett Publishers series in mathematics.<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:PublicationSeries<\/a> ;\u00A0\u00A0\u00A0\nschema:hasPart<\/a> <http:\/\/www.worldcat.org\/oclc\/244068212<\/a>> ; # Geometry with an introduction to cosmic topology<\/span>\n\u00A0\u00A0\u00A0\nschema:name<\/a> \"Jones and Bartlett Publishers series in mathematics.<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/141926028#Series\/the_jones_and_bartlett_publishers_series_in_mathematics_geometry<\/a>> # The Jones and Bartlett Publishers series in mathematics. Geometry<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:PublicationSeries<\/a> ;\u00A0\u00A0\u00A0\nschema:hasPart<\/a> <http:\/\/www.worldcat.org\/oclc\/244068212<\/a>> ; # Geometry with an introduction to cosmic topology<\/span>\n\u00A0\u00A0\u00A0\nschema:name<\/a> \"The Jones and Bartlett Publishers series in mathematics. Geometry<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/141926028#Topic\/geometrie<\/a>> # Geometrie<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Geometrie<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/141926028#Topic\/nichteuklidische_geometrie<\/a>> # Nichteuklidische Geometrie<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Nichteuklidische Geometrie<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.loc.gov\/vocabulary\/countries\/mau<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\ndcterms:identifier<\/a> \"mau<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.worldcat.org\/fast\/1152692<\/a>> # Topology<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Topology<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.worldcat.org\/fast\/880553<\/a>> # Cosmic magnetic fields<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Cosmic magnetic fields<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.worldcat.org\/fast\/940864<\/a>> # Geometry<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Geometry<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/viaf.org\/viaf\/278668748<\/a>> # Michael P. Hitchman<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Hitchman<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Michael P.<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Michael P. Hitchman<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/isbn\/9780763754570<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:ProductModel<\/a> ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"0763754579<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"9780763754570<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/title\/-\/oclc\/244068212<\/a>>\u00A0\u00A0\u00A0\u00A0a \ngenont:InformationResource<\/a>, genont:ContentTypeGenericResource<\/a> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/www.worldcat.org\/oclc\/244068212<\/a>> ; # Geometry with an introduction to cosmic topology<\/span>\n\u00A0\u00A0\u00A0\nschema:dateModified<\/a> \"2019-03-02<\/span>\" ;\u00A0\u00A0\u00A0\nvoid:inDataset<\/a> <http:\/\/purl.oclc.org\/dataset\/WorldCat<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/title\/-\/oclc\/244068212#PublicationEvent\/sudbury_mass_jones_and_bartlett_publishers_2009<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:PublicationEvent<\/a> ;\u00A0\u00A0\u00A0\nschema:location<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/141926028#Place\/sudbury_mass<\/a>> ; # Sudbury, Mass.<\/span>\n\u00A0\u00A0\u00A0\nschema:organizer<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/141926028#Agent\/jones_and_bartlett_publishers<\/a>> ; # Jones and Bartlett Publishers<\/span>\n\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/title\/-\/oclc\/244068212#Review\/-2128955437<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Review<\/a> ;\u00A0\u00A0\u00A0\nschema:itemReviewed<\/a> <http:\/\/www.worldcat.org\/oclc\/244068212<\/a>> ; # Geometry with an introduction to cosmic topology<\/span>\n\u00A0\u00A0\u00A0\nschema:reviewBody<\/a> \"\"Geometry with an Introduction to Cosmic Topology is motivated by questions that have ignited the imagination of stargazers since antiquity. What is the shape of the universe? Does the universe have an edge? Is it infinitely big? Dr. Hitchman aims to clarify this fascinating area of mathematics and focuses on the mathematical tools used to investigate the shape of the universe. The text follows the Erlangen Program, which develops geometry in terms of a space and a group of transformations of that space. This approach to non-Euclidean geometry provides excellent material by which students can learn the more sophisticated modes of thinking necessary in upper-division mathematics courses.\"--Jacket.<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Content-negotiable representations<\/p>\n