skip to content
Covid-19 virus
COVID-19 Resources

Reliable information about the coronavirus (COVID-19) is available from the World Health Organization (current situation, international travel). Numerous and frequently-updated resource results are available from this WorldCat.org search. OCLC’s WebJunction has pulled together information and resources to assist library staff as they consider how to handle coronavirus issues in their communities.

Image provided by: CDC/ Alissa Eckert, MS; Dan Higgins, MAM
Gewöhnliche Differentialgleichungen Preview this item
ClosePreview this item
Checking...

Gewöhnliche Differentialgleichungen

Author: H Amann
Publisher: Berlin ; New York : De Gruyter, 1983.
Series: De Gruyter Lehrbuch.
Edition/Format:   Print book : GermanView all editions and formats
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Aufgabensammlung
Einführung
Additional Physical Format: Online version:
Amann, H. (Herbert), 1938-
Gewöhnliche Differentialgleichungen.
Berlin ; New York : de Gruyter, 1983
(OCoLC)610128673
Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: H Amann
ISBN: 3110095734 9783110095739
OCLC Number: 11844518
Description: x, 497 pages : illustrations ; 24 cm.
Series Title: De Gruyter Lehrbuch.
Responsibility: Herbert Amann.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


\n\n

Primary Entity<\/h3>\n
<http:\/\/www.worldcat.org\/oclc\/11844518<\/a>> # Gew\u00F6hnliche Differentialgleichungen<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:CreativeWork<\/a>, schema:Book<\/a> ;\u00A0\u00A0\u00A0\nlibrary:oclcnum<\/a> \"11844518<\/span>\" ;\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/15000970#Place\/berlin<\/a>> ; # Berlin<\/span>\n\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/dbpedia.org\/resource\/New_York_City<\/a>> ; # New York<\/span>\n\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/id.loc.gov\/vocabulary\/countries\/gw<\/a>> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/15000970#Topic\/differentialgleichung<\/a>> ; # Differentialgleichung<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/15000970#Topic\/gewohnliche_differentialgleichung<\/a>> ; # Gew\u00F6hnliche Differentialgleichung<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/id.worldcat.org\/fast\/893446<\/a>> ; # Differential equations<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/15000970#Topic\/nichtlineare_funktionalanalysis<\/a>> ; # Nichtlineare Funktionalanalysis<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/dewey.info\/class\/515.352\/e19\/<\/a>> ;\u00A0\u00A0\u00A0\nschema:bookFormat<\/a> bgn:PrintBook<\/a> ;\u00A0\u00A0\u00A0\nschema:creator<\/a> <http:\/\/viaf.org\/viaf\/71461548<\/a>> ; # Herbert Amann<\/span>\n\u00A0\u00A0\u00A0\nschema:datePublished<\/a> \"1983<\/span>\" ;\u00A0\u00A0\u00A0\nschema:exampleOfWork<\/a> <http:\/\/worldcat.org\/entity\/work\/id\/15000970<\/a>> ;\u00A0\u00A0\u00A0\nschema:genre<\/a> \"Aufgabensammlung<\/span>\" ;\u00A0\u00A0\u00A0\nschema:genre<\/a> \"Einf\u00FChrung<\/span>\" ;\u00A0\u00A0\u00A0\nschema:inLanguage<\/a> \"de<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isPartOf<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/15000970#Series\/de_gruyter_lehrbuch<\/a>> ; # De Gruyter Lehrbuch.<\/span>\n\u00A0\u00A0\u00A0\nschema:isSimilarTo<\/a> <http:\/\/www.worldcat.org\/oclc\/610128673<\/a>> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Gew\u00F6hnliche Differentialgleichungen<\/span>\" ;\u00A0\u00A0\u00A0\nschema:productID<\/a> \"11844518<\/span>\" ;\u00A0\u00A0\u00A0\nschema:publication<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/11844518#PublicationEvent\/berlin_new_york_de_gruyter_1983<\/a>> ;\u00A0\u00A0\u00A0\nschema:publisher<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/15000970#Agent\/de_gruyter<\/a>> ; # De Gruyter<\/span>\n\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/digitool.hbz-nrw.de:1801\/webclient\/DeliveryManager?pid=2165235&custom%5Fatt%5F2=simple%5Fviewer<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/www.gbv.de\/dms\/hbz\/toc\/ht002571836.pdf<\/a>> ;\u00A0\u00A0\u00A0\nschema:workExample<\/a> <http:\/\/worldcat.org\/isbn\/9783110095739<\/a>> ;\u00A0\u00A0\u00A0\numbel:isLike<\/a> <http:\/\/d-nb.info\/830729623<\/a>> ;\u00A0\u00A0\u00A0\nwdrs:describedby<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/11844518<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Related Entities<\/h3>\n
<http:\/\/dbpedia.org\/resource\/New_York_City<\/a>> # New York<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"New York<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/dewey.info\/class\/515.352\/e19\/<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/15000970#Agent\/de_gruyter<\/a>> # De Gruyter<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:Agent<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"De Gruyter<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/15000970#Place\/berlin<\/a>> # Berlin<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Berlin<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/15000970#Series\/de_gruyter_lehrbuch<\/a>> # De Gruyter Lehrbuch.<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:PublicationSeries<\/a> ;\u00A0\u00A0\u00A0\nschema:hasPart<\/a> <http:\/\/www.worldcat.org\/oclc\/11844518<\/a>> ; # Gew\u00F6hnliche Differentialgleichungen<\/span>\n\u00A0\u00A0\u00A0\nschema:name<\/a> \"De Gruyter Lehrbuch.<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"De Gruyter Lehrbuch<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/15000970#Topic\/differentialgleichung<\/a>> # Differentialgleichung<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Differentialgleichung<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/15000970#Topic\/gewohnliche_differentialgleichung<\/a>> # Gew\u00F6hnliche Differentialgleichung<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Gew\u00F6hnliche Differentialgleichung<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/15000970#Topic\/nichtlineare_funktionalanalysis<\/a>> # Nichtlineare Funktionalanalysis<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Nichtlineare Funktionalanalysis<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.loc.gov\/vocabulary\/countries\/gw<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\ndcterms:identifier<\/a> \"gw<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.worldcat.org\/fast\/893446<\/a>> # Differential equations<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Differential equations<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/viaf.org\/viaf\/71461548<\/a>> # Herbert Amann<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:birthDate<\/a> \"1938<\/span>\" ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Amann<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Herbert<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"H.<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Herbert Amann<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/isbn\/9783110095739<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:ProductModel<\/a> ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"3110095734<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"9783110095739<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/oclc\/610128673<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:CreativeWork<\/a> ;\u00A0\u00A0\u00A0\nrdfs:label<\/a> \"Gew\u00F6hnliche Differentialgleichungen.<\/span>\" ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"Online version:<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isSimilarTo<\/a> <http:\/\/www.worldcat.org\/oclc\/11844518<\/a>> ; # Gew\u00F6hnliche Differentialgleichungen<\/span>\n\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/title\/-\/oclc\/11844518<\/a>>\u00A0\u00A0\u00A0\u00A0a \ngenont:InformationResource<\/a>, genont:ContentTypeGenericResource<\/a> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/www.worldcat.org\/oclc\/11844518<\/a>> ; # Gew\u00F6hnliche Differentialgleichungen<\/span>\n\u00A0\u00A0\u00A0\nschema:dateModified<\/a> \"2019-12-17<\/span>\" ;\u00A0\u00A0\u00A0\nvoid:inDataset<\/a> <http:\/\/purl.oclc.org\/dataset\/WorldCat<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/title\/-\/oclc\/11844518#PublicationEvent\/berlin_new_york_de_gruyter_1983<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:PublicationEvent<\/a> ;\u00A0\u00A0\u00A0\nschema:location<\/a> <http:\/\/dbpedia.org\/resource\/New_York_City<\/a>> ; # New York<\/span>\n\u00A0\u00A0\u00A0\nschema:location<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/15000970#Place\/berlin<\/a>> ; # Berlin<\/span>\n\u00A0\u00A0\u00A0\nschema:organizer<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/15000970#Agent\/de_gruyter<\/a>> ; # De Gruyter<\/span>\n\u00A0\u00A0\u00A0\nschema:startDate<\/a> \"1983<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Content-negotiable representations<\/p>\n