skip to content
Covid-19 virus
COVID-19 Resources

Reliable information about the coronavirus (COVID-19) is available from the World Health Organization (current situation, international travel). Numerous and frequently-updated resource results are available from this WorldCat.org search. OCLC’s WebJunction has pulled together information and resources to assist library staff as they consider how to handle coronavirus issues in their communities.

Image provided by: CDC/ Alissa Eckert, MS; Dan Higgins, MAM
High-performance computing of sintering process at particle scale. Preview this item
ClosePreview this item
Checking...

High-performance computing of sintering process at particle scale.

Author: Daniel Humberto Pino MunozSylvain DrapierThierry CoupezJean-François MolinariDidier BouvardAll authors
Publisher: 2012.
Dissertation: Thèse de doctorat : Mécanique et Ingénierie : Saint-Etienne, EMSE : 2012.
Edition/Format:   Computer file : Document : Thesis/dissertation : French
Summary:
Dans le cadre général de la simulation du procédé de frittage en phase solide, ce travail propose une approche numérique, à l'échelle des particules, de la consolidation d'un compact pulvérulent céramique. Le frittage est un procédé mettant en jeu plusieurs chemins de diffusion activés thermiquement. Parmi ces chemins de diffusion, les plus importants sont : la diffusion surfacique, la diffusion aux
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Thèses et écrits académiques
Material Type: Document, Thesis/dissertation, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Daniel Humberto Pino Munoz; Sylvain Drapier; Thierry Coupez; Jean-François Molinari; Didier Bouvard; Julien Bruchon, Ingénieur).; François Valdivieso; École nationale supérieure des mines (Saint-Etienne).
OCLC Number: 867909386
Notes: Titre provenant de l'écran-titre.
Description: 1 online resource
Responsibility: Daniel Humberto Pino Munoz ; sous la direction de Sylvain Drapier.

Abstract:

Dans le cadre général de la simulation du procédé de frittage en phase solide, ce travail propose une approche numérique, à l'échelle des particules, de la consolidation d'un compact pulvérulent céramique. Le frittage est un procédé mettant en jeu plusieurs chemins de diffusion activés thermiquement. Parmi ces chemins de diffusion, les plus importants sont : la diffusion surfacique, la diffusion aux joints des grains et la diffusion volumique. La mise en place de cette physique dans un cadre de calcul intensif doit permettre de mieux comprendre ces mécanismes de diffusion ainsi que leur influence sur l'évolution de la microstructure. Le but de ce travail consiste à développer un modèle ainsi qu'une stratégie numérique capable d'intégrer les différents mécanismes de diffusion dans un cadre de calcul intensif. Le flux de matière est calculé en fonction du Laplacien de la courbure dans les cas de la diffusion surfacique, tandis que pour la diffusion volumique ce flux est proportionnel au gradient de la pression hydrostatique. Le modèle physique est tout d'abord présenté dans le cadre de la mécanique des milieux continus. Ensuite, la stratégie numérique développée pour la simulation du frittage d'un empilement granulaire est détaillée. Cette stratégie est basée sur une discrétisation du problème par des éléments finis stabilisés couplée avec une méthode Level-set pour décrire la surface libre des particules. Cette stratégie nous permet de faire des simulations avec un "grand" nombre de particules. Plusieurs simulations en 3D, menées dans un cadre de calcul parallèle, montrent l'évolution qui a lieu sur un empilement granulaire réaliste.

Within the general context of solid-state sintering process, this work presents a numerical modeling approach, at the particle scale, of ceramic particle packing consolidation. Typically, the sintering process triggers several mass transport paths that are thermally activated. Among those diffusion paths, the most important ones are: surface diffusion, grain boundary diffusion and volume diffusion. Including this physics into a high-performance computing framework would permit to gain precious insights about the driving mechanisms. The aim of the present work is to develop a model and a numerical strategy able to integrate the different diffusion mechanisms into continuum mechanics framework. In the cases of surface diffusion and volume diffusion, the mass flux is calculated as a function of the surface curvature Laplacian and the hydrostatic pressure gradient, respectively. The physical model describing these two transport mechanisms is first presented within the framework of continuum mechanics. Then the numerical strategy developed for the simulation of the sintering of many particles is detailed. This strategy is based on a discretization of the problem by using a finite element approach coupled with a Level-Set method used to describe the particles free surface. This versatile strategy allows us to perform simulations involving a relatively large number of particles. Furthermore, a mesh adaptation technique allows the particles surface description to be improved, while the number of mesh elements is kept reasonable. Several 3D simulations, performed in a parallel computing framework, show the changes occurring in the structure of 3D granular stacks.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


\n\n

Primary Entity<\/h3>\n
<http:\/\/www.worldcat.org\/oclc\/867909386<\/a>> # High-performance computing of sintering process at particle scale.<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:ComputerFile<\/a>, schema:CreativeWork<\/a>, bgn:Thesis<\/a>, schema:MediaObject<\/a> ;\u00A0\u00A0\u00A0\nbgn:inSupportOf<\/a> \"Th\u00E8se de doctorat : M\u00E9canique et Ing\u00E9nierie : Saint-Etienne, EMSE : 2012.<\/span>\" ;\u00A0\u00A0\u00A0\nlibrary:oclcnum<\/a> \"867909386<\/span>\" ;\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/id.loc.gov\/vocabulary\/countries\/fr<\/a>> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Thing\/methode_level_set<\/a>> ; # M\u00E9thode Level-Set<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Thing\/calcul_intensif<\/a>> ; # Calcul intensif<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Topic\/diffusion_physique<\/a>> ; # Diffusion (physique)<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Thing\/frittage<\/a>> ; # Frittage<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Thing\/phenomenes_de_diffusion<\/a>> ; # Ph\u00E9nom\u00E9nes de diffusion<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Thing\/elements_finis<\/a>> ; # El\u00E9ments finis<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Topic\/calcul_intensif_informatique<\/a>> ; # Calcul intensif (informatique)<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Thing\/tension_surfacique<\/a>> ; # Tension surfacique<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Topic\/particules_matiere<\/a>> ; # Particules (mati\u00E8re)<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Topic\/frittage_metallurgie<\/a>> ; # Frittage (m\u00E9tallurgie)<\/span>\n\u00A0\u00A0\u00A0\nschema:author<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Person\/pino_munoz_daniel_humberto_1986<\/a>> ; # Daniel Humberto Pino Munoz<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Person\/coupez_thierry<\/a>> ; # Thierry Coupez<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Person\/molinari_jean_francois<\/a>> ; # Jean-Fran\u00E7ois Molinari<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Organization\/ecole_nationale_superieure_des_mines_saint_etienne<\/a>> ; # \u00C9cole nationale sup\u00E9rieure des mines (Saint-Etienne).<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Person\/bruchon_julien_1976_ingenieur<\/a>> ; # Ing\u00E9nieur). Julien Bruchon<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Person\/drapier_sylvain<\/a>> ; # Sylvain Drapier<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Person\/valdivieso_francois<\/a>> ; # Fran\u00E7ois Valdivieso<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Person\/bouvard_didier<\/a>> ; # Didier Bouvard<\/span>\n\u00A0\u00A0\u00A0\nschema:datePublished<\/a> \"2012<\/span>\" ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"Dans le cadre g\u00E9n\u00E9ral de la simulation du proc\u00E9d\u00E9 de frittage en phase solide, ce travail propose une approche num\u00E9rique, \u00E0 l\'\u00E9chelle des particules, de la consolidation d\'un compact pulv\u00E9rulent c\u00E9ramique. Le frittage est un proc\u00E9d\u00E9 mettant en jeu plusieurs chemins de diffusion activ\u00E9s thermiquement. Parmi ces chemins de diffusion, les plus importants sont : la diffusion surfacique, la diffusion aux joints des grains et la diffusion volumique. La mise en place de cette physique dans un cadre de calcul intensif doit permettre de mieux comprendre ces m\u00E9canismes de diffusion ainsi que leur influence sur l\'\u00E9volution de la microstructure. Le but de ce travail consiste \u00E0 d\u00E9velopper un mod\u00E8le ainsi qu\'une strat\u00E9gie num\u00E9rique capable d\'int\u00E9grer les diff\u00E9rents m\u00E9canismes de diffusion dans un cadre de calcul intensif. Le flux de mati\u00E8re est calcul\u00E9 en fonction du Laplacien de la courbure dans les cas de la diffusion surfacique, tandis que pour la diffusion volumique ce flux est proportionnel au gradient de la pression hydrostatique. Le mod\u00E8le physique est tout d\'abord pr\u00E9sent\u00E9 dans le cadre de la m\u00E9canique des milieux continus. Ensuite, la strat\u00E9gie num\u00E9rique d\u00E9velopp\u00E9e pour la simulation du frittage d\'un empilement granulaire est d\u00E9taill\u00E9e. Cette strat\u00E9gie est bas\u00E9e sur une discr\u00E9tisation du probl\u00E8me par des \u00E9l\u00E9ments finis stabilis\u00E9s coupl\u00E9e avec une m\u00E9thode Level-set pour d\u00E9crire la surface libre des particules. Cette strat\u00E9gie nous permet de faire des simulations avec un \"grand\" nombre de particules. Plusieurs simulations en 3D, men\u00E9es dans un cadre de calcul parall\u00E8le, montrent l\'\u00E9volution qui a lieu sur un empilement granulaire r\u00E9aliste.<\/span>\"@fr<\/a> ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"Within the general context of solid-state sintering process, this work presents a numerical modeling approach, at the particle scale, of ceramic particle packing consolidation. Typically, the sintering process triggers several mass transport paths that are thermally activated. Among those diffusion paths, the most important ones are: surface diffusion, grain boundary diffusion and volume diffusion. Including this physics into a high-performance computing framework would permit to gain precious insights about the driving mechanisms. The aim of the present work is to develop a model and a numerical strategy able to integrate the different diffusion mechanisms into continuum mechanics framework. In the cases of surface diffusion and volume diffusion, the mass flux is calculated as a function of the surface curvature Laplacian and the hydrostatic pressure gradient, respectively. The physical model describing these two transport mechanisms is first presented within the framework of continuum mechanics. Then the numerical strategy developed for the simulation of the sintering of many particles is detailed. This strategy is based on a discretization of the problem by using a finite element approach coupled with a Level-Set method used to describe the particles free surface. This versatile strategy allows us to perform simulations involving a relatively large number of particles. Furthermore, a mesh adaptation technique allows the particles surface description to be improved, while the number of mesh elements is kept reasonable. Several 3D simulations, performed in a parallel computing framework, show the changes occurring in the structure of 3D granular stacks.<\/span>\"@fr<\/a> ;\u00A0\u00A0\u00A0\nschema:exampleOfWork<\/a> <http:\/\/worldcat.org\/entity\/work\/id\/1756909677<\/a>> ;\u00A0\u00A0\u00A0\nschema:genre<\/a> \"Th\u00E8ses et \u00E9crits acad\u00E9miques<\/span>\"@fr<\/a> ;\u00A0\u00A0\u00A0\nschema:inLanguage<\/a> \"fr<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"High-performance computing of sintering process at particle scale.<\/span>\"@fr<\/a> ;\u00A0\u00A0\u00A0\nschema:productID<\/a> \"867909386<\/span>\" ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/www.theses.fr\/2012EMSE0669\/abes<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <https:\/\/tel.archives-ouvertes.fr\/tel-00843105<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/www.theses.fr\/2012EMSE0669\/document<\/a>> ;\u00A0\u00A0\u00A0\nwdrs:describedby<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/867909386<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Related Entities<\/h3>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Organization\/ecole_nationale_superieure_des_mines_saint_etienne<\/a>> # \u00C9cole nationale sup\u00E9rieure des mines (Saint-Etienne).<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Organization<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"\u00C9cole nationale sup\u00E9rieure des mines (Saint-Etienne).<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Person\/bouvard_didier<\/a>> # Didier Bouvard<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Bouvard<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Didier<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Didier Bouvard<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Person\/bruchon_julien_1976_ingenieur<\/a>> # Ing\u00E9nieur). Julien Bruchon<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:birthDate<\/a> \"1976<\/span>\" ;\u00A0\u00A0\u00A0\nschema:deathDate<\/a> \";<\/span>\" ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Bruchon<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Julien<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Ing\u00E9nieur). Julien Bruchon<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Person\/coupez_thierry<\/a>> # Thierry Coupez<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Coupez<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Thierry<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Thierry Coupez<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Person\/drapier_sylvain<\/a>> # Sylvain Drapier<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Drapier<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Sylvain<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Sylvain Drapier<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Person\/molinari_jean_francois<\/a>> # Jean-Fran\u00E7ois Molinari<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Molinari<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Jean-Fran\u00E7ois<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Jean-Fran\u00E7ois Molinari<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Person\/pino_munoz_daniel_humberto_1986<\/a>> # Daniel Humberto Pino Munoz<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:birthDate<\/a> \"1986<\/span>\" ;\u00A0\u00A0\u00A0\nschema:deathDate<\/a> \"\" ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Pino Munoz<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Daniel Humberto<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Daniel Humberto Pino Munoz<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Person\/valdivieso_francois<\/a>> # Fran\u00E7ois Valdivieso<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Valdivieso<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Fran\u00E7ois<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Fran\u00E7ois Valdivieso<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Thing\/calcul_intensif<\/a>> # Calcul intensif<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Calcul intensif<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Thing\/elements_finis<\/a>> # El\u00E9ments finis<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"El\u00E9ments finis<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Thing\/frittage<\/a>> # Frittage<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Frittage<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Thing\/methode_level_set<\/a>> # M\u00E9thode Level-Set<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"M\u00E9thode Level-Set<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Thing\/phenomenes_de_diffusion<\/a>> # Ph\u00E9nom\u00E9nes de diffusion<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Ph\u00E9nom\u00E9nes de diffusion<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Thing\/tension_surfacique<\/a>> # Tension surfacique<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Tension surfacique<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Topic\/calcul_intensif_informatique<\/a>> # Calcul intensif (informatique)<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Calcul intensif (informatique)<\/span>\"@fr<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Topic\/diffusion_physique<\/a>> # Diffusion (physique)<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Diffusion (physique)<\/span>\"@fr<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Topic\/frittage_metallurgie<\/a>> # Frittage (m\u00E9tallurgie)<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Frittage (m\u00E9tallurgie)<\/span>\"@fr<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/1756909677#Topic\/particules_matiere<\/a>> # Particules (mati\u00E8re)<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Particules (mati\u00E8re)<\/span>\"@fr<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.loc.gov\/vocabulary\/countries\/fr<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\ndcterms:identifier<\/a> \"fr<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.theses.fr\/2012EMSE0669\/document<\/a>>\u00A0\u00A0\u00A0\nrdfs:comment<\/a> \"Acc\u00E8s au texte int\u00E9gral<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n