skip to content
A history of mathematics Preview this item
ClosePreview this item
Checking...

A history of mathematics

Author: Carl B Boyer; Uta C Merzbach
Publisher: New York : Wiley, ©1991.
Edition/Format:   eBook : Document : English : 2nd ed. [rev.]View all editions and formats
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: History
Additional Physical Format: Print version:
Boyer, Carl B. (Carl Benjamin), 1906-1976.
History of mathematics.
New York : Wiley, ©1991
(DLC) 89005325
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Carl B Boyer; Uta C Merzbach
OCLC Number: 1035607906
Notes: "The initial revision [i.e. 2nd ed.], which appeared two years ago, was designed for classroom use. The exercises found there, and in the original edition, have been dropped in this edition"--Page ix.
Description: 1 online resource (xx, 715 pages : illustrations
Contents: Origins --
Egypt --
Mesopotamia --
Ionia and the Pythagoreans --
Heroic age --
Age of Plato and Aristotle --
Euclid of Alexandria --
Archimedes of Syracuse --
Apollonius of Perga --
Greek trigonometry and mensuration --
Revival and decline of Greek mathematics --
China and India --
Arabic hegemony --
Europe in the Middle Ages --
Renaissance --
Prelude to modern mathematics --
Time of Fermat and Descartes --
Transitional period --
Newton and Leibniz --
Bernoulli era --
Age of Euler --
Mathematicians of the French Revolution --
Time of Gauss and Cauchy --
Geometry --
Analysis --
Algebra --
Poincare and Hilbert --
Aspects of the twentieth century --
References --
General bibliography --
Appendix: Chronological table --
Index. 1. Origins --
The concept of number --
Early number bases --
Number language and the origin of counting --
Origin of geometry --
2. Egypt --
Early records --
Hieroglyphic notation --
Ahmes papyrus --
Unit fractions --
Arithmetic operations --
Algebraic problems --
Geometric problems --
A trigonometric ratio --
Moscow papyrus --
Mathematical weaknesses --
3. Mesopotamia --
Cuneiform records --
Positional numeration --
Sexagesimal fractions --
Fundamental operations --
Algebraic problems --
Quadratic equations --
Cubic equations --
Pythagorean triads --
Polygonal areas --
Geometry as applied arithmetic --
Mathematical weaknesses --
4. Ionia and the Pythagoreans --
Greek origins --
Thales of Miletus --
Pythagoras of Samos --
The Pythagorean pentagram --
Number mysticism --
Arithmetic and cosmology --
Figurate numbers --
Proportions --
Attic numeration --
Ionian numeration --
Arithmetic and logistic. 5. The Heroic Age --
Centers of activity --
Anaxagoras as Clazomenae --
Three famous problems --
Quadrature of lunes --
Continued proportions --
Hippias of Elis --
Philolaus and Archytas of Tarentum --
Duplication of the cube --
Incommensurability --
The golden section --
Paradoxes of Zeno --
Deductive reasoning --
Geometric algebra --
Democritus of Abdera --
6. The age of Plato and Aristotle --
The seven liberal arts --
Socrates --
Platonic solids --
Theodorus of Cyrene --
Platonic arithmetic and geometry --
Origin of analysis --
Eudoxus of Cnidus --
Method of exhaustion --
Mathematical astronomy --
Menaechmus --
Duplication of the cube --
Dinostratus and the squaring of the circle --
Autolycus of Pitane --
Aristotle --
End of the Hellenic period --
7. Euclid of Alexandria --
Author of the Elements --
Other works --
Purpose of the Elements --
Definitions and postulates --
Scope of Book I --
Geometric algebra --
Books III and IV --
Theory of proportion --
Theory of numbers --
Prime and perfect numbers --
Incommensurability --
Solid geometry --
Apocrypha --
Influence of the Elements. 8. Archimedes of Syracuse --
The siege of Syracuse --
Law of the lever --
The hydrostatic principle --
The Sand-Reckoner --
Measurement of the circle --
Angle trisection --
Area of a parabolic segment --
Volume of a paraboloidal segment --
Segment of a sphere --
On the sphere and cylinder --
Books of Lemmas --
Semiregular solids and trigonometry --
The Method --
Volume of a sphere --
Recovery of The Method --
9. Apollonius of Perga --
Lost works --
Restoration of lost works --
The problem of Apollonius --
Cycles and epicycles --
The Conics --
Names of the conic sections --
The double-napped cone --
Fundamental properties --
Conjugate diameters --
Tangents and harmonic division --
The three- and four-line locus --
Intersecting conics --
Maxima and minima, tangents and normals --
Similar conics --
Foci of conics --
Use of coordinates --
10. Greek trigonometry and mensuration --
Early trigonometry --
Aristarchus of Samos --
Eratosthenes of Cyrene --
Hipparchus of Necaea --
Menelaus of Alexandria --
Ptolemy's Almagest --
The 360-degree circle --
Construction of tables --
Ptolemaic astronomy --
Other works by Ptolemy --
Optics and astronomy --
Heron of Alexandria --
Principle of least distance --
Decline of Greek mathematics. 11. Revival and decline of Greek mathematics --
Applied mathematics --
Diophantus of Alexandria --
Nicomachus of Gerasa --
The Arithmetica of Diophantus --
Diophantine problems --
The place of Diophantus in algebra --
Pappus of Alexandria --
The Collection --
Theorems of Pappus --
The Pappus problem --
The Treasury of analysis --
The Pappus-Guldin theorems --
Proclus of Alexandria --
Boethius --
End of the Alexandrian period --
The Greek anthology --
Byzantine mathematicians of the sixth century --
12. China and India --
The oldest documents --
The Nine chapters --
Magic squares --
Rod numerals --
The abacus and decimal fractions --
Values of pi --
Algebra and Horner's method --
Thirteenth-century mathematicians --
The arithmetic triangle --
Early mathematics in India --
The Sulvasåutras --
The Siddhåantas --
Aryabhata --
Hindu numerals --
The symbol for zero --
Hindu trigonometry --
Hindu multiplication --
Long division --
Brahmagupta --
Brahmagupta's formula --
Indeterminate equations --
Bhaskara --
The Lilavati --
Ramanujan. 13. The Arabic hegemony --
Arabic conquests --
The House of Wisdom --
Al-jabr --
Quadratic equations --
The father of algebra --
Geometric foundation --
Algebraic problems --
A problem from Heron --
'Abd al-Hamid ibn-Turk --
Thabit ibn-Qurra --
Arabic numerals --
Arabic trigonometry --
Abu'l-Wefa and al-Karkhi --
Al-Biruni and Alhazen --
Omar Khayyam --
The parallel postulate --
Nasir Eddin --
Al-Kashi --
14. Europe in the Middle Ages --
From Asia to Europe --
Byzantine mathematics --
The Dark Ages --
Alcuin and Gerbert --
The century of translation --
The spread of Hindu-Arabic numerals --
The Liber abaci --
The Fibonacci sequence --
A solution of a cubic equation --
Theory of numbers and geometry --
Jordanus Nemorarius --
Campanus of Novara --
Learning in the thirteenth century --
Medieval kinematics --
Thomas Bradwardine --
Nicole Oresme --
The latitute of forms --
Infinite series --
Decline of medieval learning. 15. The Renaissance --
Humanism --
Nicholas of Cusa --
Regiomontanus --
Application of algebra to geometry --
A transitional figure --
Nicolas Chuquet's Triparty --
Luca Pacioli's Summa --
Leonardo da Vinci --
Germanic algebras --
Cardan's Ars magna --
Solution of the cubic equation --
Ferrari's solution of the quartic equation --
Irreducible cubics and complex numbers --
Robert Recorde --
Nicholas Copernicus --
Georg Joachim Rheticus --
Pierre de la Ramâee --
Bombelli's Algebra --
Johannes Werner --
Theory of perspective --
Cartography --
16. Prelude to modern mathematics --
Franðcois Viáete --
Concept of a parameter --
The analytic art --
Relations between roots and coefficients --
Thomas Harriot and William Oughtred --
Horner's method again --
Trigonometry and prosthaphaeresis --
Trigonometric solution of equations --
John Napier --
Invention of logarithms --
Henry Briggs --
Jobst Bèurgi --
Applied mathematics and decimal fractions --
Algebraic notations --
Galileo Galilei --
Values of pi --
Reconstruction of Apollonius' On Tangencies --
Infinitesimal analysis --
Johannes Kepler --
Galileo's Two new sciences --
Galileo and the infinite --
Bonaventure Cavalieri --
The spiral the and parabola. 17. The time of Fermat and Descartes --
Leading mathematicians of the time --
The Discours de la mâethode --
Invention of analytic geometry --
Arithmetization of geometry --
Geometric algebra --
Classification of curves --
Rectification of curves --
Identification of conics --
Normals and tangents --
Descartes' geometric concepts --
Fermat's loci --
Higher-dimensional analytic geometry --
Fermat's differentiations --
Fermat's integrations --
Gregory of St. Vincent --
Theory of numbers --
Theorems of Fermat --
Gilles Persone de Roberval --
Evangelista Torricelli --
New curves --
Girard Desargues --
Projective geometry --
Blaise Pascal --
Probability --
The cycloid --
18. A transitional period --
Philippe de Lahire --
Georg Mohr --
Pietro Mengoli --
Frans van Schooten --
Jan De Witt --
Johann Hudde --
Renâe Franðcois de Sluse --
The pendulum clock --
Involutes and evolutes --
John Wallis --
On conic sections --
Arithmetica infinitorum --
Christopher Wren --
Wallis' formulas --
James Gregory --
Gregory's series --
Nicolaus Mercator and William Brouncker --
Barrow's method of tangents. 19. Newton and Leibniz --
Newton's early work --
The binomial theorem --
Infinite series --
The Method of fluxions --
The Principia --
Leibniz and the harmonic triangle --
The differential triangle and infinite series --
The differential calculus --
Determinants, notations, and imaginary numbers --
The algebra of logic --
The inverse square law --
Theorems on conics --
Optics and curves --
Polar and other coordinates --
Newton's method and Newton's parallelogram --
The Arithmetica universalis --
Later years --
20. The Bernoulli era --
The Bernoulli family --
The logarithmic spiral --
Probability and infinite series --
L'Hospital's rule --
Exponential calculus --
Logarithms of negative numbers --
Petersburg paradox --
Abraham De Moivre --
De Moivre's theorem --
Roger Cotes --
James Stirling --
Colin Maclaurin --
Taylor's series --
The Analyst controversy --
Cramer's rule --
Tschirnhaus transformations --
Solid analytic geometry --
Michel Rolle and Pierre Varignon --
Mathematics in Italy --
The parallel postulate --
Divergent series. 21. The age of Euler --
Life of Euler --
Notation --
Foundation of analysis --
Infinite series --
Convergent and divergent series --
Life of d'Alembert --
The Euler identities --
D'Alembert and limits --
Differential equations --
The Clairauts --
The Riccatis --
Probability --
Theory of numbers --
Textbooks --
Synthetic geometry --
Solid analytic geometry --
Lambert and the parallel postulate --
Bâezout and elimination --
22. Mathematicians of the French Revolution --
The age of revolutions --
Leading mathematicians --
Publications before 1789 --
Lagrange and determinants --
Committee on Weights and Measures --
Condorcet on education --
Monge as administrator and teacher --
Descriptive geometry and analytic geometry --
Textbooks --
Lacroix on analytic geometry --
The organizer of victory --
Metaphysics of the calculus and geometry --
Gâeomâetrie de position --
Transversals --
Legendre's Geometry --
Elliptic integrals --
Theory of numbers --
Theory of functions --
Calculus of variations --
Lagrange multipliers --
Laplace and probability --
Celestial mechanics and operators --
Political changes. 23. The time of Gauss and Cauchy --
Nineteenth-century overview --
Gauss : early work --
Number theory --
Reception of the Disquisitiones arithmeticae --
Gauss's contributions to astronomy --
Gauss's middle years --
The beginnings of differential geometry --
Gauss's later work --
Paris in the 1820s --
Cauchy --
Gauss and Cauchy compared --
Non-Euclidean geometry --
Abel and Jacobi --
Galois --
Diffusion --
Reforms in England and Prussia --
24. Geometry --
The school of Monge --
Projective geometry : Poncelet and Chasles --
Synthetic metric geometry : Steiner --
Synthetic nonmetric geometry : von Staudt --
Analytic geometry --
Riemannian geometry --
Spaces of higher dimensions --
Felix Klein --
Post-Riemannian algebraic geometry --
25. Analysis --
Berlin and Gèottingen at mid-century --
Riemann in Gèottingen --
Mathematical physics in Germany --
Mathematical physics in the English-speaking countries --
Weierstrass and students --
The arithmetization of analysis --
Cantor and Dedekind --
Analysis in France. 26. Algebra --
Introduction --
British algebra and the operational calculus of functions --
Boole and the algebra of logic --
De Morgan --
Hamilton --
Grassmann and Ausdehnungslehre --
Cayley and Sylvester --
Linear associative algebras --
Algebraic geometry --
Algebraic and arithmetic integers --
Axioms of arithmetic --
27. Poincarâe and Hilbert --
Turn-of-the-century overview --
Poincarâe --
Mathematical physics and other applications --
Topology --
Other fields and legacy --
Hilbert --
Invariant theory --
Hilbert's Zahlbericht --
The foundations of geometry --
The Hilbert problems --
Hilbert and analysis --
Waring's problem and Hilbert's work after 1909 --
28. Aspects of the twentieth century --
General overview --
Integration and measure --
Functional analysis and general topology --
Algebra --
Differential geometry and tensor analysis --
The 1930s and World War II --
Probability --
Homological algebra and category theory --
Bourbaki --
Logic and computing --
Future outlook --
References --
General bibliography --
Appendix : Chronological table --
Index.
Responsibility: Carl B. Boyer ; revised by Uta C. Merzbach ; [foreword by Isaac Asimov].
More information:

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Related Subjects:(2)

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/1035607906> # A history of mathematics
    a schema:MediaObject, schema:Book, schema:CreativeWork ;
    library:oclcnum "1035607906" ;
    library:placeOfPublication <http://dbpedia.org/resource/New_York_City> ; # New York
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/nyu> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/3943317818#Topic/mathematics_history> ; # Mathematics--History
    schema:about <http://experiment.worldcat.org/entity/work/data/3943317818#Topic/mathematics> ; # Mathematics
    schema:bookEdition "2nd ed. [rev.]." ;
    schema:bookFormat schema:EBook ;
    schema:contributor <http://experiment.worldcat.org/entity/work/data/3943317818#Person/merzbach_uta_c_1933> ; # Uta C. Merzbach
    schema:copyrightYear "1991" ;
    schema:creator <http://experiment.worldcat.org/entity/work/data/3943317818#Person/boyer_carl_b_carl_benjamin_1906_1976> ; # Carl Benjamin Boyer
    schema:datePublished "1991" ;
    schema:description "15. The Renaissance -- Humanism -- Nicholas of Cusa -- Regiomontanus -- Application of algebra to geometry -- A transitional figure -- Nicolas Chuquet's Triparty -- Luca Pacioli's Summa -- Leonardo da Vinci -- Germanic algebras -- Cardan's Ars magna -- Solution of the cubic equation -- Ferrari's solution of the quartic equation -- Irreducible cubics and complex numbers -- Robert Recorde -- Nicholas Copernicus -- Georg Joachim Rheticus -- Pierre de la Ramâee -- Bombelli's Algebra -- Johannes Werner -- Theory of perspective -- Cartography -- 16. Prelude to modern mathematics -- Franðcois Viáete -- Concept of a parameter -- The analytic art -- Relations between roots and coefficients -- Thomas Harriot and William Oughtred -- Horner's method again -- Trigonometry and prosthaphaeresis -- Trigonometric solution of equations -- John Napier -- Invention of logarithms -- Henry Briggs -- Jobst Bèurgi -- Applied mathematics and decimal fractions -- Algebraic notations -- Galileo Galilei -- Values of pi -- Reconstruction of Apollonius' On Tangencies -- Infinitesimal analysis -- Johannes Kepler -- Galileo's Two new sciences -- Galileo and the infinite -- Bonaventure Cavalieri -- The spiral the and parabola."@en ;
    schema:description "11. Revival and decline of Greek mathematics -- Applied mathematics -- Diophantus of Alexandria -- Nicomachus of Gerasa -- The Arithmetica of Diophantus -- Diophantine problems -- The place of Diophantus in algebra -- Pappus of Alexandria -- The Collection -- Theorems of Pappus -- The Pappus problem -- The Treasury of analysis -- The Pappus-Guldin theorems -- Proclus of Alexandria -- Boethius -- End of the Alexandrian period -- The Greek anthology -- Byzantine mathematicians of the sixth century -- 12. China and India -- The oldest documents -- The Nine chapters -- Magic squares -- Rod numerals -- The abacus and decimal fractions -- Values of pi -- Algebra and Horner's method -- Thirteenth-century mathematicians -- The arithmetic triangle -- Early mathematics in India -- The Sulvasåutras -- The Siddhåantas -- Aryabhata -- Hindu numerals -- The symbol for zero -- Hindu trigonometry -- Hindu multiplication -- Long division -- Brahmagupta -- Brahmagupta's formula -- Indeterminate equations -- Bhaskara -- The Lilavati -- Ramanujan."@en ;
    schema:description "17. The time of Fermat and Descartes -- Leading mathematicians of the time -- The Discours de la mâethode -- Invention of analytic geometry -- Arithmetization of geometry -- Geometric algebra -- Classification of curves -- Rectification of curves -- Identification of conics -- Normals and tangents -- Descartes' geometric concepts -- Fermat's loci -- Higher-dimensional analytic geometry -- Fermat's differentiations -- Fermat's integrations -- Gregory of St. Vincent -- Theory of numbers -- Theorems of Fermat -- Gilles Persone de Roberval -- Evangelista Torricelli -- New curves -- Girard Desargues -- Projective geometry -- Blaise Pascal -- Probability -- The cycloid -- 18. A transitional period -- Philippe de Lahire -- Georg Mohr -- Pietro Mengoli -- Frans van Schooten -- Jan De Witt -- Johann Hudde -- Renâe Franðcois de Sluse -- The pendulum clock -- Involutes and evolutes -- John Wallis -- On conic sections -- Arithmetica infinitorum -- Christopher Wren -- Wallis' formulas -- James Gregory -- Gregory's series -- Nicolaus Mercator and William Brouncker -- Barrow's method of tangents."@en ;
    schema:description "21. The age of Euler -- Life of Euler -- Notation -- Foundation of analysis -- Infinite series -- Convergent and divergent series -- Life of d'Alembert -- The Euler identities -- D'Alembert and limits -- Differential equations -- The Clairauts -- The Riccatis -- Probability -- Theory of numbers -- Textbooks -- Synthetic geometry -- Solid analytic geometry -- Lambert and the parallel postulate -- Bâezout and elimination -- 22. Mathematicians of the French Revolution -- The age of revolutions -- Leading mathematicians -- Publications before 1789 -- Lagrange and determinants -- Committee on Weights and Measures -- Condorcet on education -- Monge as administrator and teacher -- Descriptive geometry and analytic geometry -- Textbooks -- Lacroix on analytic geometry -- The organizer of victory -- Metaphysics of the calculus and geometry -- Gâeomâetrie de position -- Transversals -- Legendre's Geometry -- Elliptic integrals -- Theory of numbers -- Theory of functions -- Calculus of variations -- Lagrange multipliers -- Laplace and probability -- Celestial mechanics and operators -- Political changes."@en ;
    schema:description "13. The Arabic hegemony -- Arabic conquests -- The House of Wisdom -- Al-jabr -- Quadratic equations -- The father of algebra -- Geometric foundation -- Algebraic problems -- A problem from Heron -- 'Abd al-Hamid ibn-Turk -- Thabit ibn-Qurra -- Arabic numerals -- Arabic trigonometry -- Abu'l-Wefa and al-Karkhi -- Al-Biruni and Alhazen -- Omar Khayyam -- The parallel postulate -- Nasir Eddin -- Al-Kashi -- 14. Europe in the Middle Ages -- From Asia to Europe -- Byzantine mathematics -- The Dark Ages -- Alcuin and Gerbert -- The century of translation -- The spread of Hindu-Arabic numerals -- The Liber abaci -- The Fibonacci sequence -- A solution of a cubic equation -- Theory of numbers and geometry -- Jordanus Nemorarius -- Campanus of Novara -- Learning in the thirteenth century -- Medieval kinematics -- Thomas Bradwardine -- Nicole Oresme -- The latitute of forms -- Infinite series -- Decline of medieval learning."@en ;
    schema:description "1. Origins -- The concept of number -- Early number bases -- Number language and the origin of counting -- Origin of geometry -- 2. Egypt -- Early records -- Hieroglyphic notation -- Ahmes papyrus -- Unit fractions -- Arithmetic operations -- Algebraic problems -- Geometric problems -- A trigonometric ratio -- Moscow papyrus -- Mathematical weaknesses -- 3. Mesopotamia -- Cuneiform records -- Positional numeration -- Sexagesimal fractions -- Fundamental operations -- Algebraic problems -- Quadratic equations -- Cubic equations -- Pythagorean triads -- Polygonal areas -- Geometry as applied arithmetic -- Mathematical weaknesses -- 4. Ionia and the Pythagoreans -- Greek origins -- Thales of Miletus -- Pythagoras of Samos -- The Pythagorean pentagram -- Number mysticism -- Arithmetic and cosmology -- Figurate numbers -- Proportions -- Attic numeration -- Ionian numeration -- Arithmetic and logistic."@en ;
    schema:description "23. The time of Gauss and Cauchy -- Nineteenth-century overview -- Gauss : early work -- Number theory -- Reception of the Disquisitiones arithmeticae -- Gauss's contributions to astronomy -- Gauss's middle years -- The beginnings of differential geometry -- Gauss's later work -- Paris in the 1820s -- Cauchy -- Gauss and Cauchy compared -- Non-Euclidean geometry -- Abel and Jacobi -- Galois -- Diffusion -- Reforms in England and Prussia -- 24. Geometry -- The school of Monge -- Projective geometry : Poncelet and Chasles -- Synthetic metric geometry : Steiner -- Synthetic nonmetric geometry : von Staudt -- Analytic geometry -- Riemannian geometry -- Spaces of higher dimensions -- Felix Klein -- Post-Riemannian algebraic geometry -- 25. Analysis -- Berlin and Gèottingen at mid-century -- Riemann in Gèottingen -- Mathematical physics in Germany -- Mathematical physics in the English-speaking countries -- Weierstrass and students -- The arithmetization of analysis -- Cantor and Dedekind -- Analysis in France."@en ;
    schema:description "19. Newton and Leibniz -- Newton's early work -- The binomial theorem -- Infinite series -- The Method of fluxions -- The Principia -- Leibniz and the harmonic triangle -- The differential triangle and infinite series -- The differential calculus -- Determinants, notations, and imaginary numbers -- The algebra of logic -- The inverse square law -- Theorems on conics -- Optics and curves -- Polar and other coordinates -- Newton's method and Newton's parallelogram -- The Arithmetica universalis -- Later years -- 20. The Bernoulli era -- The Bernoulli family -- The logarithmic spiral -- Probability and infinite series -- L'Hospital's rule -- Exponential calculus -- Logarithms of negative numbers -- Petersburg paradox -- Abraham De Moivre -- De Moivre's theorem -- Roger Cotes -- James Stirling -- Colin Maclaurin -- Taylor's series -- The Analyst controversy -- Cramer's rule -- Tschirnhaus transformations -- Solid analytic geometry -- Michel Rolle and Pierre Varignon -- Mathematics in Italy -- The parallel postulate -- Divergent series."@en ;
    schema:description "Origins -- Egypt -- Mesopotamia -- Ionia and the Pythagoreans -- Heroic age -- Age of Plato and Aristotle -- Euclid of Alexandria -- Archimedes of Syracuse -- Apollonius of Perga -- Greek trigonometry and mensuration -- Revival and decline of Greek mathematics -- China and India -- Arabic hegemony -- Europe in the Middle Ages -- Renaissance -- Prelude to modern mathematics -- Time of Fermat and Descartes -- Transitional period -- Newton and Leibniz -- Bernoulli era -- Age of Euler -- Mathematicians of the French Revolution -- Time of Gauss and Cauchy -- Geometry -- Analysis -- Algebra -- Poincare and Hilbert -- Aspects of the twentieth century -- References -- General bibliography -- Appendix: Chronological table -- Index."@en ;
    schema:description "8. Archimedes of Syracuse -- The siege of Syracuse -- Law of the lever -- The hydrostatic principle -- The Sand-Reckoner -- Measurement of the circle -- Angle trisection -- Area of a parabolic segment -- Volume of a paraboloidal segment -- Segment of a sphere -- On the sphere and cylinder -- Books of Lemmas -- Semiregular solids and trigonometry -- The Method -- Volume of a sphere -- Recovery of The Method -- 9. Apollonius of Perga -- Lost works -- Restoration of lost works -- The problem of Apollonius -- Cycles and epicycles -- The Conics -- Names of the conic sections -- The double-napped cone -- Fundamental properties -- Conjugate diameters -- Tangents and harmonic division -- The three- and four-line locus -- Intersecting conics -- Maxima and minima, tangents and normals -- Similar conics -- Foci of conics -- Use of coordinates -- 10. Greek trigonometry and mensuration -- Early trigonometry -- Aristarchus of Samos -- Eratosthenes of Cyrene -- Hipparchus of Necaea -- Menelaus of Alexandria -- Ptolemy's Almagest -- The 360-degree circle -- Construction of tables -- Ptolemaic astronomy -- Other works by Ptolemy -- Optics and astronomy -- Heron of Alexandria -- Principle of least distance -- Decline of Greek mathematics."@en ;
    schema:description "5. The Heroic Age -- Centers of activity -- Anaxagoras as Clazomenae -- Three famous problems -- Quadrature of lunes -- Continued proportions -- Hippias of Elis -- Philolaus and Archytas of Tarentum -- Duplication of the cube -- Incommensurability -- The golden section -- Paradoxes of Zeno -- Deductive reasoning -- Geometric algebra -- Democritus of Abdera -- 6. The age of Plato and Aristotle -- The seven liberal arts -- Socrates -- Platonic solids -- Theodorus of Cyrene -- Platonic arithmetic and geometry -- Origin of analysis -- Eudoxus of Cnidus -- Method of exhaustion -- Mathematical astronomy -- Menaechmus -- Duplication of the cube -- Dinostratus and the squaring of the circle -- Autolycus of Pitane -- Aristotle -- End of the Hellenic period -- 7. Euclid of Alexandria -- Author of the Elements -- Other works -- Purpose of the Elements -- Definitions and postulates -- Scope of Book I -- Geometric algebra -- Books III and IV -- Theory of proportion -- Theory of numbers -- Prime and perfect numbers -- Incommensurability -- Solid geometry -- Apocrypha -- Influence of the Elements."@en ;
    schema:description "26. Algebra -- Introduction -- British algebra and the operational calculus of functions -- Boole and the algebra of logic -- De Morgan -- Hamilton -- Grassmann and Ausdehnungslehre -- Cayley and Sylvester -- Linear associative algebras -- Algebraic geometry -- Algebraic and arithmetic integers -- Axioms of arithmetic -- 27. Poincarâe and Hilbert -- Turn-of-the-century overview -- Poincarâe -- Mathematical physics and other applications -- Topology -- Other fields and legacy -- Hilbert -- Invariant theory -- Hilbert's Zahlbericht -- The foundations of geometry -- The Hilbert problems -- Hilbert and analysis -- Waring's problem and Hilbert's work after 1909 -- 28. Aspects of the twentieth century -- General overview -- Integration and measure -- Functional analysis and general topology -- Algebra -- Differential geometry and tensor analysis -- The 1930s and World War II -- Probability -- Homological algebra and category theory -- Bourbaki -- Logic and computing -- Future outlook -- References -- General bibliography -- Appendix : Chronological table -- Index."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/3943317818> ;
    schema:genre "History"@en ;
    schema:inLanguage "en" ;
    schema:isSimilarTo <http://worldcat.org/entity/work/data/3943317818#CreativeWork/history_of_mathematics> ;
    schema:name "A history of mathematics"@en ;
    schema:productID "1035607906" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/1035607906#PublicationEvent/new_york_wiley_1991> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/3943317818#Agent/wiley> ; # Wiley
    schema:url <https://archive.org/details/historyofmathema00boye> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/1035607906> ;
    .


Related Entities

<http://dbpedia.org/resource/New_York_City> # New York
    a schema:Place ;
    schema:name "New York" ;
    .

<http://experiment.worldcat.org/entity/work/data/3943317818#Person/boyer_carl_b_carl_benjamin_1906_1976> # Carl Benjamin Boyer
    a schema:Person ;
    schema:birthDate "1906" ;
    schema:deathDate "1976" ;
    schema:familyName "Boyer" ;
    schema:givenName "Carl Benjamin" ;
    schema:givenName "Carl B." ;
    schema:name "Carl Benjamin Boyer" ;
    .

<http://experiment.worldcat.org/entity/work/data/3943317818#Person/merzbach_uta_c_1933> # Uta C. Merzbach
    a schema:Person ;
    schema:birthDate "1933" ;
    schema:familyName "Merzbach" ;
    schema:givenName "Uta C." ;
    schema:name "Uta C. Merzbach" ;
    .

<http://experiment.worldcat.org/entity/work/data/3943317818#Topic/mathematics_history> # Mathematics--History
    a schema:Intangible ;
    schema:name "Mathematics--History"@en ;
    .

<http://worldcat.org/entity/work/data/3943317818#CreativeWork/history_of_mathematics>
    a schema:CreativeWork ;
    rdfs:label "History of mathematics." ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/1035607906> ; # A history of mathematics
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.