Find a copy online
Links to this item
Find a copy in the library
Finding libraries that hold this item...
Details
Genre/Form: | Thèses et écrits académiques |
---|---|
Material Type: | Document, Thesis/dissertation, Internet resource |
Document Type: | Internet Resource, Computer File |
All Authors / Contributors: |
Inès Djeghdir; Sabine Carpin; Université d'Orléans.; École doctorale Santé, Sciences Biologiques et Chimie du Vivant (Centre-Val de Loire).; Laboratoire de biologie des ligneux et des grandes cultures (Orléans).; Institut national de la recherche agronomique (France). Unité de recherche arbres et réponses aux contraintes hydriques et environnementales. USC 1328 (Orléans).; Biomolécules et biotechnologies végétales (Tours). |
OCLC Number: | 992709574 |
Notes: | Titre provenant de l'écran-titre. |
Description: | 1 online resource |
Responsibility: | Inès Djeghdir ; sous la direction de Sabine Carpin. |
Abstract:
Plants are increasingly faced with a decrease in soil's water availability, leading to a hydric and osmotic stress and impacting on their survival. Plant tolerance to this stress will be dependent on its perception. One of the signaling mechanisms related to this stress is called MultiStep Phosphorelay (MSP) and is composed by 3 partners: a histidine-aspartate receptor kinase (HK), histidine phosphotransfer proteins (HPt) and response regulators (RR), including the B-type RR transcription factors. In Arabidopsis, an MSP with AHK1, AHP2 and ARR18 has been identified for osmotic stress signaling. For poplar, HK1a and b, paralogous genes and homologous with AHK1, 10 HPt and 9 B-type RR genes have been isolated respectively. The osmosensor function of HK1a was proposed, and an osmosensing signaling pathway composed by HK1a, 3 HPt proteins, and 6 B-type RR has been suggested. The purpose of this work was focused on the identification and characterization of B-type RR transcription factors specifically linked to osmotic stress in poplar. The main results of this work are the highlight of the transcription factor function of two B-type RR, RR13 and RR19, through the study of their ability to dimerize and transactivate or not osmotic stress-responsive genes. The RR13 seems to be specific for cytokinins signaling pathway, whereas the RR19 seems to be specific for the osmosensing one. This work strongly supports the involvement of RR19 in the osmosensing MSP. Many studies have also been initiated during this work and will facilitate the characterization of the studied MSP.
Reviews

