An introduction to algebraic topology (Book, 1998) []
skip to content
New coming soon
An introduction to algebraic topology

An introduction to algebraic topology

Author: Joseph J Rotman
Publisher: New York : Springer, 1998.
Series: Graduate texts in mathematics, 119.
Edition/Format:   Print book : English : 4. corr. printView all editions and formats

A clear exposition, with exercises, of the basic ideas of algebraic topology. Although categories and functors are introduced early in the text, excessive generality is avoided, and the author  Read more...

More like this

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...


Genre/Form: Lehrbuch
Document Type: Book
All Authors / Contributors: Joseph J Rotman
ISBN: 0387966781 9780387966786 3540966781 9783540966784
OCLC Number: 266991799
Description: XIII, 433 Seiten : Diagramme.
Contents: 0 Introduction.- Notation.- Brouwer Fixed Point Theorem.- Categories and Functors.- 1.Some Basic Topological Notions.- Homotopy.- Convexity, Contractibility, and Cones.- Paths and Path Connectedness.- 2 Simplexes.- Affine Spaces.- Affine Maps.- 3 The Fundamental Group.- The Fundamental Groupoid.- The Functor ?1.- ?1(S1).- 4 Singular Homology.- Holes and Green's Theorem.- Free Abelian Groups.- The Singular Complex and Homology Functors.- Dimension Axiom and Compact Supports.- The Homotopy Axiom.- The Hurewicz Theorem.- 5 Long Exact Sequences.- The Category Comp.- Exact Homology Sequences.- Reduced Homology.- 6 Excision and Applications.- Excision and Mayer-Vietoris.- Homology of Spheres and Some Applications.- Barycentric Subdivision and the Proof of Excision.- More Applications to Euclidean Space.- 7 Simplicial Complexes.- Definitions.- Simplicial Approximation.- Abstract Simplicial Complexes.- Simplicial Homology.- Comparison with Singular Homology.- Calculations.- Fundamental Groups of Polyhedra.- The Seifert-van Kampen Theorem.- 8 CW Complexes.- Hausdorff Quotient Spaces.- Attaching Cells.- Homology and Attaching Cells.- CW Complexes.- Cellular Homology.- 9 Natural Transformations.- Definitions and Examples.- Eilenberg-Steenrod Axioms.- Chain Equivalences.- Acyclic Models.- Lefschetz Fixed Point Theorem.- Tensor Products.- Universal Coefficients.- Eilenberg-Zilber Theorem and the Kunneth Formula.- 10 Covering Spaces.- Basic Properties.- Covering Transformations.- Existence.- Orbit Spaces.- 11 Homotopy Groups.- Function Spaces.- Group Objects and Cogroup Objects.- Loop Space and Suspension.- Homotopy Groups.- Exact Sequences.- Fibrations.- A Glimpse Ahead.- 12 Cohomology.- Differential Forms.- Cohomology Groups.- Universal Coefficients Theorems for Cohomology.- Cohomology Rings.- Computations and Applications.- Notation.
Series Title: Graduate texts in mathematics, 119.
Responsibility: Joseph J. Rotman.


Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Similar Items

Related Subjects:(1)

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.