skip to content
Introduction to Deep Learning : From Logical Calculus to Artificial Intelligence Preview this item
ClosePreview this item
Checking...

Introduction to Deep Learning : From Logical Calculus to Artificial Intelligence

Author: Sandro Skansi
Publisher: Cham : Springer International Publishing, 2018
Series: Undergraduate Topics in Computer Science
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
This textbook presents a concise, accessible and engaging first introduction to deep learning, offering a wide range of connectionist models which represent the current state-of-the-art. The text explores the most popular algorithms and architectures in a simple and intuitive style, explaining the mathematical derivations in a step-by-step manner. The content coverage includes convolutional networks, LSTMs,  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Additional Physical Format: Erscheint auch als:
Druck-Ausgabe
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Sandro Skansi
ISBN: 9783319730042 3319730045
OCLC Number: 1027754179
Description: 1 Online-Ressource (XIII, 191 Seiten 38 Illustrationen)
Series Title: Undergraduate Topics in Computer Science
Responsibility: by Sandro Skansi.

Abstract:

This textbook presents a concise, accessible and engaging first introduction to deep learning, offering a wide range of connectionist models which represent the current state-of-the-art. The text explores the most popular algorithms and architectures in a simple and intuitive style, explaining the mathematical derivations in a step-by-step manner. The content coverage includes convolutional networks, LSTMs, Word2vec, RBMs, DBNs, neural Turing machines, memory networks and autoencoders. Numerous examples in working Python code are provided throughout the book, and the code is also supplied separately at an accompanying website. Topics and features: Introduces the fundamentals of machine learning, and the mathematical and computational prerequisites for deep learning Discusses feed-forward neural networks, and explores the modifications to these which can be applied to any neural network Examines convolutional neural networks, and the recurrent connections to a feed-forward neural network Describes the notion of distributed representations, the concept of the autoencoder, and the ideas behind language processing with deep learning Presents a brief history of artificial intelligence and neural networks, and reviews interesting open research problems in deep learning and connectionism This clearly written and lively primer on deep learning is essential reading for graduate and advanced undergraduate students of computer science, cognitive science and mathematics, as well as fields such as linguistics, logic, philosophy, and psychology. Dr. Sandro Skansi is an Assistant Professor of Logic at the University of Zagreb and Lecturer in Data Science at University College Algebra, Zagreb, Croatia.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/1027754179> # Introduction to Deep Learning : From Logical Calculus to Artificial Intelligence
    a schema:CreativeWork, schema:MediaObject, schema:Book ;
    library:oclcnum "1027754179" ;
    schema:about <http://experiment.worldcat.org/entity/work/data/4798101290#Topic/mathematical_models_of_cognitive_processes_and_neural_networks> ; # Mathematical Models of Cognitive Processes and Neural Networks
    schema:about <http://experiment.worldcat.org/entity/work/data/4798101290#Topic/coding_theory> ; # Coding theory
    schema:about <http://dewey.info/class/006.312/e23/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/4798101290#Topic/data_mining> ; # Data mining
    schema:about <http://experiment.worldcat.org/entity/work/data/4798101290#Topic/data_mining_and_knowledge_discovery> ; # Data Mining and Knowledge Discovery
    schema:about <http://experiment.worldcat.org/entity/work/data/4798101290#Topic/pattern_recognition> ; # Pattern Recognition
    schema:about <http://experiment.worldcat.org/entity/work/data/4798101290#Topic/image_processing_and_computer_vision> ; # Image Processing and Computer Vision
    schema:about <http://experiment.worldcat.org/entity/work/data/4798101290#Topic/image_processing> ; # Image processing
    schema:about <http://experiment.worldcat.org/entity/work/data/4798101290#Topic/pattern_perception> ; # Pattern perception
    schema:about <http://experiment.worldcat.org/entity/work/data/4798101290#Topic/neural_networks_computer_science> ; # Neural networks (Computer science)
    schema:about <http://experiment.worldcat.org/entity/work/data/4798101290#Topic/computer_science> ; # Computer science
    schema:about <http://experiment.worldcat.org/entity/work/data/4798101290#Topic/coding_and_information_theory> ; # Coding and Information Theory
    schema:author <http://experiment.worldcat.org/entity/work/data/4798101290#Person/skansi_sandro> ; # Sandro Skansi
    schema:bookFormat schema:EBook ;
    schema:datePublished "2018" ;
    schema:description "This textbook presents a concise, accessible and engaging first introduction to deep learning, offering a wide range of connectionist models which represent the current state-of-the-art. The text explores the most popular algorithms and architectures in a simple and intuitive style, explaining the mathematical derivations in a step-by-step manner. The content coverage includes convolutional networks, LSTMs, Word2vec, RBMs, DBNs, neural Turing machines, memory networks and autoencoders. Numerous examples in working Python code are provided throughout the book, and the code is also supplied separately at an accompanying website. Topics and features: Introduces the fundamentals of machine learning, and the mathematical and computational prerequisites for deep learning Discusses feed-forward neural networks, and explores the modifications to these which can be applied to any neural network Examines convolutional neural networks, and the recurrent connections to a feed-forward neural network Describes the notion of distributed representations, the concept of the autoencoder, and the ideas behind language processing with deep learning Presents a brief history of artificial intelligence and neural networks, and reviews interesting open research problems in deep learning and connectionism This clearly written and lively primer on deep learning is essential reading for graduate and advanced undergraduate students of computer science, cognitive science and mathematics, as well as fields such as linguistics, logic, philosophy, and psychology. Dr. Sandro Skansi is an Assistant Professor of Logic at the University of Zagreb and Lecturer in Data Science at University College Algebra, Zagreb, Croatia." ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/4798101290> ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://worldcat.org/issn/1863-7310> ; # Undergraduate Topics in Computer Science,
    schema:isSimilarTo <http://worldcat.org/entity/work/data/4798101290#CreativeWork/> ;
    schema:name "Introduction to Deep Learning : From Logical Calculus to Artificial Intelligence" ;
    schema:productID "1027754179" ;
    schema:url <https://doi.org/10.1007/978-3-319-73004-2> ;
    schema:workExample <http://worldcat.org/isbn/9783319730042> ;
    schema:workExample <http://dx.doi.org/10.1007/978-3-319-73004-2> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/1027754179> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/4798101290#Person/skansi_sandro> # Sandro Skansi
    a schema:Person ;
    schema:familyName "Skansi" ;
    schema:givenName "Sandro" ;
    schema:name "Sandro Skansi" ;
    .

<http://experiment.worldcat.org/entity/work/data/4798101290#Topic/coding_and_information_theory> # Coding and Information Theory
    a schema:Intangible ;
    schema:name "Coding and Information Theory" ;
    .

<http://experiment.worldcat.org/entity/work/data/4798101290#Topic/computer_science> # Computer science
    a schema:Intangible ;
    schema:name "Computer science" ;
    schema:name "Computer Science" ;
    .

<http://experiment.worldcat.org/entity/work/data/4798101290#Topic/data_mining_and_knowledge_discovery> # Data Mining and Knowledge Discovery
    a schema:Intangible ;
    schema:name "Data Mining and Knowledge Discovery" ;
    .

<http://experiment.worldcat.org/entity/work/data/4798101290#Topic/image_processing_and_computer_vision> # Image Processing and Computer Vision
    a schema:Intangible ;
    schema:name "Image Processing and Computer Vision" ;
    .

<http://experiment.worldcat.org/entity/work/data/4798101290#Topic/mathematical_models_of_cognitive_processes_and_neural_networks> # Mathematical Models of Cognitive Processes and Neural Networks
    a schema:Intangible ;
    schema:name "Mathematical Models of Cognitive Processes and Neural Networks" ;
    .

<http://experiment.worldcat.org/entity/work/data/4798101290#Topic/neural_networks_computer_science> # Neural networks (Computer science)
    a schema:Intangible ;
    schema:name "Neural networks (Computer science)" ;
    .

<http://experiment.worldcat.org/entity/work/data/4798101290#Topic/pattern_perception> # Pattern perception
    a schema:Intangible ;
    schema:name "Pattern perception" ;
    .

<http://experiment.worldcat.org/entity/work/data/4798101290#Topic/pattern_recognition> # Pattern Recognition
    a schema:Intangible ;
    schema:name "Pattern Recognition" ;
    schema:name "Pattern recognition" ;
    .

<http://worldcat.org/entity/work/data/4798101290#CreativeWork/>
    a schema:CreativeWork ;
    schema:description "Erscheint auch als:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/1027754179> ; # Introduction to Deep Learning : From Logical Calculus to Artificial Intelligence
    .

<http://worldcat.org/isbn/9783319730042>
    a schema:ProductModel ;
    schema:isbn "3319730045" ;
    schema:isbn "9783319730042" ;
    .

<http://worldcat.org/issn/1863-7310> # Undergraduate Topics in Computer Science,
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/1027754179> ; # Introduction to Deep Learning : From Logical Calculus to Artificial Intelligence
    schema:issn "1863-7310" ;
    schema:name "Undergraduate Topics in Computer Science," ;
    .

<http://www.worldcat.org/title/-/oclc/1027754179>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
    schema:about <http://www.worldcat.org/oclc/1027754179> ; # Introduction to Deep Learning : From Logical Calculus to Artificial Intelligence
    schema:dateModified "2019-07-12" ;
    void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.