skip to content
The language of self-avoiding walks : connective constants of quasi-transitive graphs Preview this item
ClosePreview this item
Checking...

The language of self-avoiding walks : connective constants of quasi-transitive graphs

Author: Christian Lindorfer
Publisher: Wiesbaden : Springer Spektrum, [2018] ©2018
Series: BestMasters.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
The connective constant of a quasi-transitive infinite graph is a measure for the asymptotic growth rate of the number of self-avoiding walks of length n from a given starting vertex. On edge-labelled graphs the formal language of self-avoiding walks is generated by a formal grammar, which can be used to calculate the connective constant of the graph. Christian Lindorfer discusses the methods in some examples,  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Christian Lindorfer
ISBN: 9783658247645 3658247649
OCLC Number: 1088953998
Description: 1 online resource.
Contents: Introduction --
Self-avoiding walks and connective constants --
Graph height functions and bridges --
Self-avoiding walks on one-dimensional lattices --
Context-free languages --
The language of self-avoiding walks.
Series Title: BestMasters.
Responsibility: Christian Lindorfer.

Abstract:

The connective constant of a quasi-transitive infinite graph is a measure for the asymptotic growth rate of the number of self-avoiding walks of length n from a given starting vertex.  Read more...

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/1088953998> # The language of self-avoiding walks : connective constants of quasi-transitive graphs
    a schema:MediaObject, schema:Book, schema:CreativeWork ;
    library:oclcnum "1088953998" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/gw> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/5573412984#Topic/algebra> ; # Algebra
    schema:about <http://experiment.worldcat.org/entity/work/data/5573412984#Topic/graph_theory> ; # Graph theory
    schema:about <http://dewey.info/class/511.5/e23/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/5573412984#Topic/random_walks_mathematics> ; # Random walks (Mathematics)
    schema:about <http://experiment.worldcat.org/entity/work/data/5573412984#Topic/geometry> ; # Geometry
    schema:about <http://experiment.worldcat.org/entity/work/data/5573412984#Topic/computational_mathematics_and_numerical_analysis> ; # Computational Mathematics and Numerical Analysis
    schema:author <http://experiment.worldcat.org/entity/work/data/5573412984#Person/lindorfer_christian> ; # Christian Lindorfer
    schema:bookFormat schema:EBook ;
    schema:copyrightYear "2018" ;
    schema:datePublished "2018" ;
    schema:description "Introduction -- Self-avoiding walks and connective constants -- Graph height functions and bridges -- Self-avoiding walks on one-dimensional lattices -- Context-free languages -- The language of self-avoiding walks."@en ;
    schema:description "The connective constant of a quasi-transitive infinite graph is a measure for the asymptotic growth rate of the number of self-avoiding walks of length n from a given starting vertex. On edge-labelled graphs the formal language of self-avoiding walks is generated by a formal grammar, which can be used to calculate the connective constant of the graph. Christian Lindorfer discusses the methods in some examples, including the infinite ladder-graph and the sandwich of two regular infinite trees."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/5573412984> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/5573412984#Series/bestmasters> ; # BestMasters.
    schema:isSimilarTo <http://worldcat.org/entity/work/data/5573412984#CreativeWork/> ;
    schema:name "The language of self-avoiding walks : connective constants of quasi-transitive graphs"@en ;
    schema:productID "1088953998" ;
    schema:url <http://link.springer.com/10.1007/978-3-658-24764-5> ;
    schema:url <https://doi.org/10.1007/978-3-658-24764-5> ;
    schema:workExample <http://worldcat.org/isbn/9783658247645> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/1088953998> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/5573412984#Person/lindorfer_christian> # Christian Lindorfer
    a schema:Person ;
    schema:familyName "Lindorfer" ;
    schema:givenName "Christian" ;
    schema:name "Christian Lindorfer" ;
    .

<http://experiment.worldcat.org/entity/work/data/5573412984#Series/bestmasters> # BestMasters.
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/1088953998> ; # The language of self-avoiding walks : connective constants of quasi-transitive graphs
    schema:name "BestMasters." ;
    schema:name "BestMasters" ;
    .

<http://experiment.worldcat.org/entity/work/data/5573412984#Topic/computational_mathematics_and_numerical_analysis> # Computational Mathematics and Numerical Analysis
    a schema:Intangible ;
    schema:name "Computational Mathematics and Numerical Analysis"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5573412984#Topic/random_walks_mathematics> # Random walks (Mathematics)
    a schema:Intangible ;
    schema:name "Random walks (Mathematics)"@en ;
    .

<http://link.springer.com/10.1007/978-3-658-24764-5>
    rdfs:comment "from Springer" ;
    rdfs:comment "(Unlimited Concurrent Users)" ;
    .

<http://worldcat.org/entity/work/data/5573412984#CreativeWork/>
    a schema:CreativeWork ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/1088953998> ; # The language of self-avoiding walks : connective constants of quasi-transitive graphs
    .

<http://worldcat.org/isbn/9783658247645>
    a schema:ProductModel ;
    schema:isbn "3658247649" ;
    schema:isbn "9783658247645" ;
    .

<http://www.worldcat.org/title/-/oclc/1088953998>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
    schema:about <http://www.worldcat.org/oclc/1088953998> ; # The language of self-avoiding walks : connective constants of quasi-transitive graphs
    schema:dateModified "2019-04-30" ;
    void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.