skip to content
Learning and decision-making from rank data Preview this item
ClosePreview this item
Checking...

Learning and decision-making from rank data

Author: Lirong Xia
Publisher: [San Rafael, California] : Morgan & Claypool Publishers, [2019] ©2019
Series: Synthesis lectures on artificial intelligence and machine learning, #40.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
The ubiquitous challenge of learning and decision-making from rank data arises in situations where intelligent systems collect preference and behavior data from humans, learn from the data, and then use the data to help humans make efficient, effective, and timely decisions. Often, such data are represented by rankings. This book surveys some recent progress toward addressing the challenge from the considerations of  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Lirong Xia
ISBN: 1681734419 9781681734415
OCLC Number: 1088564003
Description: 1 online resource (xv, 143 pages) : illustrations.
Contents: 1. Introduction --
1.1 The research problem --
1.2 Overview of the book --
2. Statistical models for rank data --
2.1 Basics of statistical modeling --
2.1.1 Modeling partial orders as events --
2.2 Random utility models --
2.2.1 The Plackett-Luce model --
2.2.2 Properties of random utility models (RUMs) --
2.2.3 Sampling from random utility models --
2.2.4 Connection to discrete choice models --
2.3 Distance-based models --
2.3.1 Mallows' model --
2.3.2 Repeated insertion model: efficient sampling from mallows --
2.3.3 Condorcet's model --
2.4 Datasets and model fitness --
2.5 Bibliographical notes --
3. Parameter estimation algorithms --
3.1 Algorithms for the Plackett-Luce model --
3.1.1 The minorize-maximization (MM) algorithm --
3.1.2 The Luce spectral ranking (LSR) algorithm --
3.1.3 Generalized method-of-moments (GMM) algorithm --
3.2 Algorithms for general random utility models --
3.2.1 The expectation-maximization (EM) algorithm --
3.2.2 EM for RUMs: Monte Carlo E-step by Gibbs sampling --
3.2.3 EM for RUMs: M-step --
3.2.4 GMM for RUMs with location families --
3.3 Algorithms for distance-based models --
3.4 Bibliographical notes --
4. The rank-breaking framework --
4.1 Rank-breaking for random utility models --
4.1.1 Breaking + GMM for Plackett-Luce --
4.1.2 Uniqueness of outcome of algorithm 4.11 --
4.1.3 Characterization of consistent breakings for Plackett-Luce --
4.1.4 Computational and statistical efficiency of algorithms for Plackett-Luce --
4.1.5 Rank-breaking for general random utility models with location families --
4.2 Rank-breaking + composite marginal likelihood (RBCML) --
4.2.1 Weighted breakings --
4.2.2 Composite marginal likelihood methods (CML) --
4.2.3 The RBCML framework --
4.2.4 Consistency and asymptotic normality of RBCML --
4.2.5 RBCML for Plackett-Luce --
4.2.6 RBCML for RUMs with location families --
4.2.7 The adaptive RBCML algorithm --
4.2.8 Experiments --
4.3 Bibliographical notes --
5. Mixture models for rank data --
5.1 Mixture models --
5.1.1 Identifiability of mixture models --
5.1.2 An EM algorithm for learning mixture models --
5.2 Learning mixtures of Plackett-Luce --
5.2.1 Algorithms for mixtures of Plackett-Luce --
5.3 Learning mixtures of general RUMs with location families --
5.4 Learning mixtures of mallows --
5.5 Bibliographical notes --
6. Bayesian preference elicitation --
6.1 The Bayesian preference elicitation problem --
6.1.1 Plackett-Luce model with features --
6.1.2 Computing expected information gain --
6.2 Bayesian preference elicitation for personal choice --
6.2.1 Information criteria --
6.2.2 Approximation techniques for personal choice --
6.3 Bayesian preference elicitation for social choice --
6.3.1 Approximating posterior distributions --
6.3.2 Ranked-top-k questions --
6.3.3 Social choice by randomized voting --
6.4 Experimental results --
6.4.1 Estimating the cost function --
6.4.2 Comparing information criteria --
6.5 Bibliographical notes --
7. Socially desirable group decision-making from rank data --
7.1 Statistical decision-theoretic framework --
7.1.1 Measuring decision mechanisms: Bayesian loss and frequentist loss --
7.1.2 Socio-economic criteria: social choice axioms --
7.2 Minimax estimators in neutral frameworks --
7.3 Socially desirable Bayesian estimators --
7.3.1 An impossibility theorem on strict Condorcet criterion --
7.3.2 Satisfiability of other axioms --
7.4 An automated design framework --
7.4.1 Data generation --
7.4.2 Hypothesis space --
7.4.3 Optimization --
7.5 Bibliographical notes --
8. Future directions --
Bibliography --
Author's biography.
Series Title: Synthesis lectures on artificial intelligence and machine learning, #40.
Responsibility: Lirong Xia.

Abstract:

Surveys some recent progress toward addressing the challenge from the considerations of statistics, computation, and socio-economics. The book covers classical statistical models for rank data,  Read more...

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/1088564003> # Learning and decision-making from rank data
    a schema:MediaObject, schema:Book, schema:CreativeWork ;
    library:oclcnum "1088564003" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/cau> ;
    schema:about <http://dewey.info/class/519.5/e23/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/8928904078#Topic/mathematics_probability_&_statistics_general> ; # MATHEMATICS / Probability & Statistics / General
    schema:about <http://experiment.worldcat.org/entity/work/data/8928904078#Topic/machine_learning_mathematical_models> ; # Machine learning--Mathematical models
    schema:about <http://experiment.worldcat.org/entity/work/data/8928904078#Thing/random_utility_models> ; # random utility models
    schema:about <http://experiment.worldcat.org/entity/work/data/8928904078#Thing/rank_data> ; # rank data
    schema:about <http://experiment.worldcat.org/entity/work/data/8928904078#Topic/ranking_and_selection_statistics_data_processing> ; # Ranking and selection (Statistics)--Data processing
    schema:about <http://experiment.worldcat.org/entity/work/data/8928904078#Thing/social_choice> ; # social choice
    schema:about <http://experiment.worldcat.org/entity/work/data/8928904078#Thing/distance_based_models> ; # distance-based models
    schema:about <http://experiment.worldcat.org/entity/work/data/8928904078#Thing/fairness> ; # fairness
    schema:about <http://experiment.worldcat.org/entity/work/data/8928904078#Thing/bayesian_estimators> ; # Bayesian estimators
    schema:about <http://experiment.worldcat.org/entity/work/data/8928904078#Thing/mallows_model> ; # Mallows' model
    schema:about <http://experiment.worldcat.org/entity/work/data/8928904078#Thing/plackett_luce_model> ; # Plackett-Luce model
    schema:about <http://experiment.worldcat.org/entity/work/data/8928904078#Topic/mathematics_applied> ; # MATHEMATICS / Applied
    schema:about <http://experiment.worldcat.org/entity/work/data/8928904078#Thing/preference_elicitation> ; # preference elicitation
    schema:about <http://experiment.worldcat.org/entity/work/data/8928904078#Topic/decision_making_computer_simulation> ; # Decision making--Computer simulation
    schema:about <http://experiment.worldcat.org/entity/work/data/8928904078#Thing/decision_making> ; # decision-making
    schema:author <http://experiment.worldcat.org/entity/work/data/8928904078#Person/xia_lirong> ; # Lirong Xia
    schema:bookFormat schema:EBook ;
    schema:copyrightYear "2019" ;
    schema:datePublished "2019" ;
    schema:description "1. Introduction -- 1.1 The research problem -- 1.2 Overview of the book --"@en ;
    schema:description "The ubiquitous challenge of learning and decision-making from rank data arises in situations where intelligent systems collect preference and behavior data from humans, learn from the data, and then use the data to help humans make efficient, effective, and timely decisions. Often, such data are represented by rankings. This book surveys some recent progress toward addressing the challenge from the considerations of statistics, computation, and socio-economics. We will cover classical statistical models for rank data, including random utility models, distance-based models, and mixture models. We will discuss and compare classical and state-of-the-art algorithms, such as algorithms based on Minorize-Majorization (MM), Expectation-Maximization (EM), Generalized Method-of-Moments (GMM), rank breaking, and tensor decomposition. We will also introduce principled Bayesian preference elicitation frameworks for collecting rank data. Finally, we will examine socio-economic aspects of statistically desirable decision-making mechanisms, such as Bayesian estimators. This book can be useful in three ways: (1) for theoreticians in statistics and machine learning to better understand the considerations and caveats of learning from rank data, compared to learning from other types of data, especially cardinal data; (2) for practitioners to apply algorithms covered by the book for sampling, learning, and aggregation; and (3) as a textbook for graduate students or advanced undergraduate students to learn about the field. This book requires that the reader has basic knowledge in probability, statistics, and algorithms. Knowledge in social choice would also help but is not required."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/8928904078> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://worldcat.org/issn/1939-4608> ; # Synthesis lectures on artificial intelligence and machine learning ;
    schema:isPartOf <http://worldcat.org/issn/1939-4616> ; # Synthesis lectures on artificial intelligence and machine learning,
    schema:isSimilarTo <http://worldcat.org/entity/work/data/8928904078#CreativeWork/> ;
    schema:name "Learning and decision-making from rank data"@en ;
    schema:productID "1088564003" ;
    schema:url <http://dx.doi.org/10.2200/S00876ED1V01Y201810AIM040> ;
    schema:url <http://public.eblib.com/choice/PublicFullRecord.aspx?p=5704118> ;
    schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2027749> ;
    schema:workExample <http://worldcat.org/isbn/9781681734415> ;
    schema:workExample <http://dx.doi.org/10.2200/S00876ED1V01Y201810AIM040> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/1088564003> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/8928904078#Person/xia_lirong> # Lirong Xia
    a schema:Person ;
    schema:familyName "Xia" ;
    schema:givenName "Lirong" ;
    schema:name "Lirong Xia" ;
    .

<http://experiment.worldcat.org/entity/work/data/8928904078#Thing/bayesian_estimators> # Bayesian estimators
    a schema:Thing ;
    schema:name "Bayesian estimators" ;
    .

<http://experiment.worldcat.org/entity/work/data/8928904078#Thing/decision_making> # decision-making
    a schema:Thing ;
    schema:name "decision-making" ;
    .

<http://experiment.worldcat.org/entity/work/data/8928904078#Thing/distance_based_models> # distance-based models
    a schema:Thing ;
    schema:name "distance-based models" ;
    .

<http://experiment.worldcat.org/entity/work/data/8928904078#Thing/mallows_model> # Mallows' model
    a schema:Thing ;
    schema:name "Mallows' model" ;
    .

<http://experiment.worldcat.org/entity/work/data/8928904078#Thing/plackett_luce_model> # Plackett-Luce model
    a schema:Thing ;
    schema:name "Plackett-Luce model" ;
    .

<http://experiment.worldcat.org/entity/work/data/8928904078#Thing/preference_elicitation> # preference elicitation
    a schema:Thing ;
    schema:name "preference elicitation" ;
    .

<http://experiment.worldcat.org/entity/work/data/8928904078#Thing/random_utility_models> # random utility models
    a schema:Thing ;
    schema:name "random utility models" ;
    .

<http://experiment.worldcat.org/entity/work/data/8928904078#Topic/decision_making_computer_simulation> # Decision making--Computer simulation
    a schema:Intangible ;
    schema:name "Decision making--Computer simulation"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/8928904078#Topic/machine_learning_mathematical_models> # Machine learning--Mathematical models
    a schema:Intangible ;
    schema:name "Machine learning--Mathematical models"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/8928904078#Topic/mathematics_applied> # MATHEMATICS / Applied
    a schema:Intangible ;
    schema:name "MATHEMATICS / Applied"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/8928904078#Topic/mathematics_probability_&_statistics_general> # MATHEMATICS / Probability & Statistics / General
    a schema:Intangible ;
    schema:name "MATHEMATICS / Probability & Statistics / General"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/8928904078#Topic/ranking_and_selection_statistics_data_processing> # Ranking and selection (Statistics)--Data processing
    a schema:Intangible ;
    schema:name "Ranking and selection (Statistics)--Data processing"@en ;
    .

<http://worldcat.org/entity/work/data/8928904078#CreativeWork/>
    a schema:CreativeWork ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/1088564003> ; # Learning and decision-making from rank data
    .

<http://worldcat.org/isbn/9781681734415>
    a schema:ProductModel ;
    schema:isbn "1681734419" ;
    schema:isbn "9781681734415" ;
    .

<http://worldcat.org/issn/1939-4608> # Synthesis lectures on artificial intelligence and machine learning ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/1088564003> ; # Learning and decision-making from rank data
    schema:issn "1939-4608" ;
    schema:name "Synthesis lectures on artificial intelligence and machine learning ;" ;
    .

<http://worldcat.org/issn/1939-4616> # Synthesis lectures on artificial intelligence and machine learning,
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/1088564003> ; # Learning and decision-making from rank data
    schema:issn "1939-4616" ;
    schema:name "Synthesis lectures on artificial intelligence and machine learning," ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.