skip to content
Covid-19 virus
COVID-19 Resources

Reliable information about the coronavirus (COVID-19) is available from the World Health Organization (current situation, international travel). Numerous and frequently-updated resource results are available from this WorldCat.org search. OCLC’s WebJunction has pulled together information and resources to assist library staff as they consider how to handle coronavirus issues in their communities.

Image provided by: CDC/ Alissa Eckert, MS; Dan Higgins, MAM
Learning theory : 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA, June 13-15, 2007 ; proceedings Preview this item
ClosePreview this item
Checking...

Learning theory : 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA, June 13-15, 2007 ; proceedings

Author: Nader H Bshouty; Conference on Learning Theory (20, 2007, San Diego, Calif.)
Publisher: Berlin : Springer, 2007.
Series: Lecture Notes in Computer Science, 4539.
Edition/Format:   Kit : Conference publication   Visual material   Book : English
Summary:

It covers unsupervised, semisupervised and active learning, statistical learning theory, inductive inference, regularized learning, kernel methods, SVM, online and reinforcement learning, learning  Read more...

Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Kongress
San Diego (Calif., 2007)
Material Type: Conference publication, Kit, Internet resource
Document Type: Visual material, Book, Internet Resource
All Authors / Contributors: Nader H Bshouty; Conference on Learning Theory (20, 2007, San Diego, Calif.)
ISBN: 3540729259 9783540729259
OCLC Number: 634398031
Description: XII, 634 Seiten : Diagramme.
Contents: Invited Presentations.- Property Testing: A Learning Theory Perspective.- Spectral Algorithms for Learning and Clustering.- Unsupervised, Semisupervised and Active Learning I.- Minimax Bounds for Active Learning.- Stability of k-Means Clustering.- Margin Based Active Learning.- Unsupervised, Semisupervised and Active Learning II.- Learning Large-Alphabet and Analog Circuits with Value Injection Queries.- Teaching Dimension and the Complexity of Active Learning.- Multi-view Regression Via Canonical Correlation Analysis.- Statistical Learning Theory.- Aggregation by Exponential Weighting and Sharp Oracle Inequalities.- Occam's Hammer.- Resampling-Based Confidence Regions and Multiple Tests for a Correlated Random Vector.- Suboptimality of Penalized Empirical Risk Minimization in Classification.- Transductive Rademacher Complexity and Its Applications.- Inductive Inference.- U-Shaped, Iterative, and Iterative-with-Counter Learning.- Mind Change Optimal Learning of Bayes Net Structure.- Learning Correction Grammars.- Mitotic Classes.- Online and Reinforcement Learning I.- Regret to the Best vs. Regret to the Average.- Strategies for Prediction Under Imperfect Monitoring.- Bounded Parameter Markov Decision Processes with Average Reward Criterion.- Online and Reinforcement Learning II.- On-Line Estimation with the Multivariate Gaussian Distribution.- Generalised Entropy and Asymptotic Complexities of Languages.- Q-Learning with Linear Function Approximation.- Regularized Learning, Kernel Methods, SVM.- How Good Is a Kernel When Used as a Similarity Measure?.- Gaps in Support Vector Optimization.- Learning Languages with Rational Kernels.- Generalized SMO-Style Decomposition Algorithms.- Learning Algorithms and Limitations on Learning.- Learning Nested Halfspaces and Uphill Decision Trees.- An Efficient Re-scaled Perceptron Algorithm for Conic Systems.- A Lower Bound for Agnostically Learning Disjunctions.- Sketching Information Divergences.- Competing with Stationary Prediction Strategies.- Online and Reinforcement Learning III.- Improved Rates for the Stochastic Continuum-Armed Bandit Problem.- Learning Permutations with Exponential Weights.- Online and Reinforcement Learning IV.- Multitask Learning with Expert Advice.- Online Learning with Prior Knowledge.- Dimensionality Reduction.- Nonlinear Estimators and Tail Bounds for Dimension Reduction in l 1 Using Cauchy Random Projections.- Sparse Density Estimation with ?1 Penalties.- ?1 Regularization in Infinite Dimensional Feature Spaces.- Prediction by Categorical Features: Generalization Properties and Application to Feature Ranking.- Other Approaches.- Observational Learning in Random Networks.- The Loss Rank Principle for Model Selection.- Robust Reductions from Ranking to Classification.- Open Problems.- Rademacher Margin Complexity.- Open Problems in Efficient Semi-supervised PAC Learning.- Resource-Bounded Information Gathering for Correlation Clustering.- Are There Local Maxima in the Infinite-Sample Likelihood of Gaussian Mixture Estimation?.- When Is There a Free Matrix Lunch?.
Series Title: Lecture Notes in Computer Science, 4539.
Responsibility: Nader H. Bshouty ... (eds.).

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Related Subjects:(1)

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


\n\n

Primary Entity<\/h3>\n
<http:\/\/www.worldcat.org\/oclc\/634398031<\/a>> # Learning theory : 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA, June 13-15, 2007 ; proceedings<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:Kit<\/a>, schema:CreativeWork<\/a> ;\u00A0\u00A0\u00A0\nlibrary:oclcnum<\/a> \"634398031<\/span>\" ;\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1155901897#Place\/berlin<\/a>> ; # Berlin<\/span>\n\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/id.loc.gov\/vocabulary\/countries\/gw<\/a>> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1155901897#Topic\/algorithmische_lerntheorie<\/a>> ; # Algorithmische Lerntheorie<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/dewey.info\/class\/006.31\/e22\/ger\/<\/a>> ;\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/viaf.org\/viaf\/134193881<\/a>> ; # Conference on Learning Theory (20, 2007, San Diego, Calif.)<\/span>\n\u00A0\u00A0\u00A0\nschema:contributor<\/a> <http:\/\/viaf.org\/viaf\/44984489<\/a>> ; # Nader H. Bshouty<\/span>\n\u00A0\u00A0\u00A0\nschema:datePublished<\/a> \"2007<\/span>\" ;\u00A0\u00A0\u00A0\nschema:exampleOfWork<\/a> <http:\/\/worldcat.org\/entity\/work\/id\/1155901897<\/a>> ;\u00A0\u00A0\u00A0\nschema:genre<\/a> \"San Diego (Calif., 2007)<\/span>\" ;\u00A0\u00A0\u00A0\nschema:genre<\/a> \"Kongress<\/span>\" ;\u00A0\u00A0\u00A0\nschema:genre<\/a> \"Conference publication<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:inLanguage<\/a> \"en<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isPartOf<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1155901897#Series\/lecture_notes_in_computer_science<\/a>> ; # Lecture Notes in Computer Science ;<\/span>\n\u00A0\u00A0\u00A0\nschema:name<\/a> \"Learning theory : 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA, June 13-15, 2007 ; proceedings<\/span>\" ;\u00A0\u00A0\u00A0\nschema:productID<\/a> \"634398031<\/span>\" ;\u00A0\u00A0\u00A0\nschema:publication<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/634398031#PublicationEvent\/berlin_springer_2007<\/a>> ;\u00A0\u00A0\u00A0\nschema:publisher<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1155901897#Agent\/springer<\/a>> ; # Springer<\/span>\n\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/bvbr.bib-bvb.de:8991\/F?func=service&doc_library=BVB01&doc_number=015692433&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/digitale-objekte.hbz-nrw.de\/storage2\/2018\/06\/16\/file_444\/7942351.pdf<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/bvbr.bib-bvb.de:8991\/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015692433&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA<\/a>> ;\u00A0\u00A0\u00A0\nschema:workExample<\/a> <http:\/\/worldcat.org\/isbn\/9783540729259<\/a>> ;\u00A0\u00A0\u00A0\nwdrs:describedby<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/634398031<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Related Entities<\/h3>\n
<http:\/\/dewey.info\/class\/006.31\/e22\/ger\/<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/1155901897#Agent\/springer<\/a>> # Springer<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:Agent<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Springer<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/1155901897#Place\/berlin<\/a>> # Berlin<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Berlin<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/1155901897#Series\/lecture_notes_in_computer_science<\/a>> # Lecture Notes in Computer Science ;<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:PublicationSeries<\/a> ;\u00A0\u00A0\u00A0\nschema:hasPart<\/a> <http:\/\/www.worldcat.org\/oclc\/634398031<\/a>> ; # Learning theory : 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA, June 13-15, 2007 ; proceedings<\/span>\n\u00A0\u00A0\u00A0\nschema:name<\/a> \"Lecture Notes in Computer Science ;<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/1155901897#Topic\/algorithmische_lerntheorie<\/a>> # Algorithmische Lerntheorie<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Algorithmische Lerntheorie<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.loc.gov\/vocabulary\/countries\/gw<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\ndcterms:identifier<\/a> \"gw<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/viaf.org\/viaf\/134193881<\/a>> # Conference on Learning Theory (20, 2007, San Diego, Calif.)<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Organization<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Conference on Learning Theory (20, 2007, San Diego, Calif.)<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/viaf.org\/viaf\/44984489<\/a>> # Nader H. Bshouty<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Bshouty<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Nader H.<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Nader H. Bshouty<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/isbn\/9783540729259<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:ProductModel<\/a> ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"3540729259<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"9783540729259<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/title\/-\/oclc\/634398031<\/a>>\u00A0\u00A0\u00A0\u00A0a \ngenont:InformationResource<\/a>, genont:ContentTypeGenericResource<\/a> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/www.worldcat.org\/oclc\/634398031<\/a>> ; # Learning theory : 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA, June 13-15, 2007 ; proceedings<\/span>\n\u00A0\u00A0\u00A0\nschema:dateModified<\/a> \"2019-01-16<\/span>\" ;\u00A0\u00A0\u00A0\nvoid:inDataset<\/a> <http:\/\/purl.oclc.org\/dataset\/WorldCat<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/title\/-\/oclc\/634398031#PublicationEvent\/berlin_springer_2007<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:PublicationEvent<\/a> ;\u00A0\u00A0\u00A0\nschema:location<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1155901897#Place\/berlin<\/a>> ; # Berlin<\/span>\n\u00A0\u00A0\u00A0\nschema:organizer<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/1155901897#Agent\/springer<\/a>> ; # Springer<\/span>\n\u00A0\u00A0\u00A0\nschema:startDate<\/a> \"2007<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Content-negotiable representations<\/p>\n