skip to content
Covid-19 virus
COVID-19 Resources

Reliable information about the coronavirus (COVID-19) is available from the World Health Organization (current situation, international travel). Numerous and frequently-updated resource results are available from this WorldCat.org search. OCLC’s WebJunction has pulled together information and resources to assist library staff as they consider how to handle coronavirus issues in their communities.

Image provided by: CDC/ Alissa Eckert, MS; Dan Higgins, MAM
Linear and generalized linear mixed models and their applications Preview this item
ClosePreview this item
Checking...

Linear and generalized linear mixed models and their applications

Author: Jiming Jiang
Publisher: New York ; London : Springer, ©2007.
Series: Springer series in statistics.
Edition/Format:   Print book : EnglishView all editions and formats
Summary:
"This book covers two major classes of mixed effects models, linear mixed models and generalized linear mixed models, and it presents an up-to-date account of theory and methods in analysis of these models as well as their applications in various fields. The book offers a systematic approach to inference about non-Gaussian linear mixed models. Furthermore, it has included recently developed methods, such as mixed  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: Jiming Jiang
ISBN: 9780387479415 0387479414 9780387479460 0387479465
OCLC Number: 77256604
Description: xiv, 257 pages : illustrations ; 24 cm
Contents: Cover --
Contents --
Preface --
1 Linear Mixed Models: Part I --
1.1 Introduction --
1.1.1 Effect of Air Pollution Episodes on Children --
1.1.2 Prediction of Maize Single-Cross Performance --
1.1.3 Small Area Estimation of Income --
1.2 Types of Linear Mixed Models --
1.2.1 Gaussian Mixed Models --
1.2.2 Non-Gaussian Linear Mixed Models --
1.3 Estimation in Gaussian Models --
1.3.1 Maximum Likelihood --
1.3.2 Restricted Maximum Likelihood --
1.4 Estimation in Non-Gaussian Models --
1.4.1 Quasi-Likelihood Method --
1.4.2 Partially Observed Information --
1.4.3 Iterative Weighted Least Squares --
1.4.4 Jackknife Method --
1.5 Other Methods of Estimation --
1.5.1 Analysis of Variance Estimation --
1.5.2 Minimum Norm Quadratic Unbiased Estimation --
1.6 Notes on Computation and Software --
1.6.1 Notes on Computation --
1.6.2 Notes on Software --
1.7 Real-Life Data Examples --
1.7.1 Analysis of Birth Weights of Lambs --
1.7.2 Analysis of Hip Replacements Data --
1.8 Further Results and Technical Notes --
1.9 Exercises --
2 Linear Mixed Models: Part II --
2.1 Tests in Linear Mixed Models --
2.1.1 Tests in Gaussian Mixed Models --
2.1.2 Tests in Non-Gaussian Linear Mixed Models --
2.2 Confidence Intervals in Linear Mixed Models --
2.2.1 Confidence Intervals in Gaussian Mixed Models --
2.2.2 Confidence Intervals in Non-Gaussian Linear Mixed Models --
2.3 Prediction --
2.3.1 Prediction of Mixed Effect --
2.3.2 Prediction of Future Observation --
2.4 Model Checking and Selection --
2.4.1 Model Diagnostics --
2.4.2 Model Selection --
2.5 Bayesian Inference --
2.5.1 Inference about Variance Components --
2.5.2 Inference about Fixed and Random Effects --
2.6 Real-Life Data Examples --
2.6.1 Analysis of the Birth Weights of Lambs (Continued) --
2.6.2 The Baseball Example --
2.7 Further Results and Technical Notes --
2.8 Exercises --
3 Generalized Linear Mixed Models: Part I --
3.1 Introduction --
3.2 Generalized Linear Mixed Models --
3.3 Real-Life Data Examples --
3.3.1 The Salamander Mating Experiments --
3.3.2 A Log-Linear Mixed Model for Seizure Counts --
3.3.3 Small Area Estimation of Mammography Rates --
3.4 Likelihood Function under GLMM --
3.5 Approximate Inference --
3.5.1 Laplace Approximation --
3.5.2 Penalized Quasi-Likelihood Estimation --
3.5.3 Tests of Zero Variance Components --
3.5.4 Maximum Hierarchical Likelihood --
3.6 Prediction of Random Effects --
3.6.1 Joint Estimation of Fixed and Random Effects --
3.6.2 Empirical Best Prediction --
3.6.3 A Simulated Example --
3.7 Further Results and Technical Notes --
3.7.1 More on NLGSA --
3.7.2 Asymptotic Properties of PQWLS Estimators --
3.7.3 MSE of EBP --
3.7.4 MSPE of the Model-Assisted EBP --
3.8 Exercises --
4 Generalized Linear Mixed Models: Part II --
4.1 Likelihood-Based Inference --
4.1.1 A Monte Carlo EM Algorithm for Binary Data --
4.1.2 Extensions --
4&#
Series Title: Springer series in statistics.
Responsibility: Jiming Jiang.
More information:

Abstract:

This book covers two major classes of mixed effects models, linear mixed models and generalized linear mixed models. Furthermore, it includes recently developed methods, such as mixed model  Read more...

Reviews

Editorial reviews

Publisher Synopsis

From the reviews:"This book is an up to date description of linear mixed models, LMM, and generalized linear mixed models, GLMM. The material is complete enough to cover a course in a Ph.D. program Read more...

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


\n\n

Primary Entity<\/h3>\n
<http:\/\/www.worldcat.org\/oclc\/77256604<\/a>> # Linear and generalized linear mixed models and their applications<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Book<\/a>, schema:CreativeWork<\/a> ;\u00A0\u00A0\u00A0\nlibrary:oclcnum<\/a> \"77256604<\/span>\" ;\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/dbpedia.org\/resource\/New_York_City<\/a>> ; # New York<\/span>\n\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/dbpedia.org\/resource\/London<\/a>> ; # London<\/span>\n\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/id.loc.gov\/vocabulary\/countries\/nyu<\/a>> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/62922512#Topic\/lineares_modell<\/a>> ; # Lineares Modell<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/62922512#Topic\/linear_models<\/a>> ; # Linear Models<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/62922512#Topic\/gemischtes_modell<\/a>> ; # Gemischtes Modell<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/62922512#Topic\/linear_models_statistics<\/a>> ; # Linear models (Statistics)<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/62922512#Topic\/linjara_modeller<\/a>> ; # Linj\u00E4ra modeller<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/62922512#Topic\/verallgemeinertes_lineares_modell<\/a>> ; # Verallgemeinertes lineares Modell<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/dewey.info\/class\/519.5\/e22\/<\/a>> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/62922512#Topic\/statistisk_metod<\/a>> ; # Statistisk metod<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/62922512#Topic\/lineaire_modellen<\/a>> ; # Lineaire modellen<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/62922512#Topic\/mathematical_statistics<\/a>> ; # Mathematical statistics<\/span>\n\u00A0\u00A0\u00A0\nschema:bookFormat<\/a> bgn:PrintBook<\/a> ;\u00A0\u00A0\u00A0\nschema:copyrightYear<\/a> \"2007<\/span>\" ;\u00A0\u00A0\u00A0\nschema:creator<\/a> <http:\/\/viaf.org\/viaf\/18360375<\/a>> ; # Jiming Jiang<\/span>\n\u00A0\u00A0\u00A0\nschema:datePublished<\/a> \"2007<\/span>\" ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"Cover -- Contents -- Preface -- 1 Linear Mixed Models: Part I -- 1.1 Introduction -- 1.1.1 Effect of Air Pollution Episodes on Children -- 1.1.2 Prediction of Maize Single-Cross Performance -- 1.1.3 Small Area Estimation of Income -- 1.2 Types of Linear Mixed Models -- 1.2.1 Gaussian Mixed Models -- 1.2.2 Non-Gaussian Linear Mixed Models -- 1.3 Estimation in Gaussian Models -- 1.3.1 Maximum Likelihood -- 1.3.2 Restricted Maximum Likelihood -- 1.4 Estimation in Non-Gaussian Models -- 1.4.1 Quasi-Likelihood Method -- 1.4.2 Partially Observed Information -- 1.4.3 Iterative Weighted Least Squares -- 1.4.4 Jackknife Method -- 1.5 Other Methods of Estimation -- 1.5.1 Analysis of Variance Estimation -- 1.5.2 Minimum Norm Quadratic Unbiased Estimation -- 1.6 Notes on Computation and Software -- 1.6.1 Notes on Computation -- 1.6.2 Notes on Software -- 1.7 Real-Life Data Examples -- 1.7.1 Analysis of Birth Weights of Lambs -- 1.7.2 Analysis of Hip Replacements Data -- 1.8 Further Results and Technical Notes -- 1.9 Exercises -- 2 Linear Mixed Models: Part II -- 2.1 Tests in Linear Mixed Models -- 2.1.1 Tests in Gaussian Mixed Models -- 2.1.2 Tests in Non-Gaussian Linear Mixed Models -- 2.2 Confidence Intervals in Linear Mixed Models -- 2.2.1 Confidence Intervals in Gaussian Mixed Models -- 2.2.2 Confidence Intervals in Non-Gaussian Linear Mixed Models -- 2.3 Prediction -- 2.3.1 Prediction of Mixed Effect -- 2.3.2 Prediction of Future Observation -- 2.4 Model Checking and Selection -- 2.4.1 Model Diagnostics -- 2.4.2 Model Selection -- 2.5 Bayesian Inference -- 2.5.1 Inference about Variance Components -- 2.5.2 Inference about Fixed and Random Effects -- 2.6 Real-Life Data Examples -- 2.6.1 Analysis of the Birth Weights of Lambs (Continued) -- 2.6.2 The Baseball Example -- 2.7 Further Results and Technical Notes -- 2.8 Exercises -- 3 Generalized Linear Mixed Models: Part I -- 3.1 Introduction -- 3.2 Generalized Linear Mixed Models -- 3.3 Real-Life Data Examples -- 3.3.1 The Salamander Mating Experiments -- 3.3.2 A Log-Linear Mixed Model for Seizure Counts -- 3.3.3 Small Area Estimation of Mammography Rates -- 3.4 Likelihood Function under GLMM -- 3.5 Approximate Inference -- 3.5.1 Laplace Approximation -- 3.5.2 Penalized Quasi-Likelihood Estimation -- 3.5.3 Tests of Zero Variance Components -- 3.5.4 Maximum Hierarchical Likelihood -- 3.6 Prediction of Random Effects -- 3.6.1 Joint Estimation of Fixed and Random Effects -- 3.6.2 Empirical Best Prediction -- 3.6.3 A Simulated Example -- 3.7 Further Results and Technical Notes -- 3.7.1 More on NLGSA -- 3.7.2 Asymptotic Properties of PQWLS Estimators -- 3.7.3 MSE of EBP -- 3.7.4 MSPE of the Model-Assisted EBP -- 3.8 Exercises -- 4 Generalized Linear Mixed Models: Part II -- 4.1 Likelihood-Based Inference -- 4.1.1 A Monte Carlo EM Algorithm for Binary Data -- 4.1.2 Extensions -- 4&#<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:exampleOfWork<\/a> <http:\/\/worldcat.org\/entity\/work\/id\/62922512<\/a>> ;\u00A0\u00A0\u00A0\nschema:inLanguage<\/a> \"en<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isPartOf<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/62922512#Series\/springer_series_in_statistics<\/a>> ; # Springer series in statistics.<\/span>\n\u00A0\u00A0\u00A0\nschema:name<\/a> \"Linear and generalized linear mixed models and their applications<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:productID<\/a> \"77256604<\/span>\" ;\u00A0\u00A0\u00A0\nschema:publication<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/77256604#PublicationEvent\/new_york_london_springer_2007<\/a>> ;\u00A0\u00A0\u00A0\nschema:publisher<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/62922512#Agent\/springer<\/a>> ; # Springer<\/span>\n\u00A0\u00A0\u00A0\nschema:reviews<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/77256604#Review\/1307236841<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <https:\/\/doi.org\/10.1007\/978-0-387-47946-0<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/catdir.loc.gov\/catdir\/enhancements\/fy0818\/2006935876-t.html<\/a>> ;\u00A0\u00A0\u00A0\nschema:workExample<\/a> <http:\/\/worldcat.org\/isbn\/9780387479415<\/a>> ;\u00A0\u00A0\u00A0\nschema:workExample<\/a> <http:\/\/worldcat.org\/isbn\/9780387479460<\/a>> ;\u00A0\u00A0\u00A0\numbel:isLike<\/a> <http:\/\/bnb.data.bl.uk\/id\/resource\/GBA6A5851<\/a>> ;\u00A0\u00A0\u00A0\nwdrs:describedby<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/77256604<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Related Entities<\/h3>\n
<http:\/\/dbpedia.org\/resource\/London<\/a>> # London<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"London<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/dbpedia.org\/resource\/New_York_City<\/a>> # New York<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"New York<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/dewey.info\/class\/519.5\/e22\/<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/62922512#Agent\/springer<\/a>> # Springer<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:Agent<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Springer<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/62922512#Series\/springer_series_in_statistics<\/a>> # Springer series in statistics.<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:PublicationSeries<\/a> ;\u00A0\u00A0\u00A0\nschema:hasPart<\/a> <http:\/\/www.worldcat.org\/oclc\/77256604<\/a>> ; # Linear and generalized linear mixed models and their applications<\/span>\n\u00A0\u00A0\u00A0\nschema:name<\/a> \"Springer series in statistics.<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Springer series in statistics<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/62922512#Topic\/gemischtes_modell<\/a>> # Gemischtes Modell<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Gemischtes Modell<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/62922512#Topic\/lineaire_modellen<\/a>> # Lineaire modellen<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Lineaire modellen<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/62922512#Topic\/linear_models<\/a>> # Linear Models<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Linear Models<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/62922512#Topic\/linear_models_statistics<\/a>> # Linear models (Statistics)<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Linear models (Statistics)<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/62922512#Topic\/lineares_modell<\/a>> # Lineares Modell<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Lineares Modell<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/62922512#Topic\/linjara_modeller<\/a>> # Linj\u00E4ra modeller<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Linj\u00E4ra modeller<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/62922512#Topic\/mathematical_statistics<\/a>> # Mathematical statistics<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Mathematical statistics<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/62922512#Topic\/statistisk_metod<\/a>> # Statistisk metod<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Statistisk metod<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/62922512#Topic\/verallgemeinertes_lineares_modell<\/a>> # Verallgemeinertes lineares Modell<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Verallgemeinertes lineares Modell<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.loc.gov\/vocabulary\/countries\/nyu<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\ndcterms:identifier<\/a> \"nyu<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/viaf.org\/viaf\/18360375<\/a>> # Jiming Jiang<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Jiang<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Jiming<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Jiming Jiang<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/isbn\/9780387479415<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:ProductModel<\/a> ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"0387479414<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"9780387479415<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/isbn\/9780387479460<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:ProductModel<\/a> ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"0387479465<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"9780387479460<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/title\/-\/oclc\/77256604<\/a>>\u00A0\u00A0\u00A0\u00A0a \ngenont:InformationResource<\/a>, genont:ContentTypeGenericResource<\/a> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/www.worldcat.org\/oclc\/77256604<\/a>> ; # Linear and generalized linear mixed models and their applications<\/span>\n\u00A0\u00A0\u00A0\nschema:dateModified<\/a> \"2020-03-31<\/span>\" ;\u00A0\u00A0\u00A0\nvoid:inDataset<\/a> <http:\/\/purl.oclc.org\/dataset\/WorldCat<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/title\/-\/oclc\/77256604#PublicationEvent\/new_york_london_springer_2007<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:PublicationEvent<\/a> ;\u00A0\u00A0\u00A0\nschema:location<\/a> <http:\/\/dbpedia.org\/resource\/London<\/a>> ; # London<\/span>\n\u00A0\u00A0\u00A0\nschema:location<\/a> <http:\/\/dbpedia.org\/resource\/New_York_City<\/a>> ; # New York<\/span>\n\u00A0\u00A0\u00A0\nschema:organizer<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/62922512#Agent\/springer<\/a>> ; # Springer<\/span>\n\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/title\/-\/oclc\/77256604#Review\/1307236841<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Review<\/a> ;\u00A0\u00A0\u00A0\nschema:itemReviewed<\/a> <http:\/\/www.worldcat.org\/oclc\/77256604<\/a>> ; # Linear and generalized linear mixed models and their applications<\/span>\n\u00A0\u00A0\u00A0\nschema:reviewBody<\/a> \"\"This book covers two major classes of mixed effects models, linear mixed models and generalized linear mixed models, and it presents an up-to-date account of theory and methods in analysis of these models as well as their applications in various fields. The book offers a systematic approach to inference about non-Gaussian linear mixed models. Furthermore, it has included recently developed methods, such as mixed model diagnostics, mixed model selection, and jackknife method in the context of mixed models.\" \"The book is aimed at students, researchers and other practitioners who are interested in using mixed models for statistical data analysis. The book is suitable for a course in a M.S. program in statistics, provided that the section of further results and technical notes in each of the first four chapters is skipped. If these four sections are included, the book may be used for a course in a Ph. D. program in statistics. A first course in mathematical statistics, the ability to use computers for data analysis, and familiarity with calculus and linear algebra are prerequisites. Additional statistical courses such as regression analysis and a good knowledge about matrices would be helpful.\"--Jacket.<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n