skip to content
Covid-19 virus
COVID-19 Resources

Reliable information about the coronavirus (COVID-19) is available from the World Health Organization (current situation, international travel). Numerous and frequently-updated resource results are available from this WorldCat.org search. OCLC’s WebJunction has pulled together information and resources to assist library staff as they consider how to handle coronavirus issues in their communities.

Image provided by: CDC/ Alissa Eckert, MS; Dan Higgins, MAM
Low substrate temperature modeling outlook of scaled n-MOSFET Preview this item
ClosePreview this item
Checking...

Low substrate temperature modeling outlook of scaled n-MOSFET

Author: Nabil Shovon Ashraf
Publisher: [San Rafael, California] : Morgan & Claypool Publishers, [2018] ©2018
Series: Synthesis lectures on emerging engineering technologies, #10.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
Low substrate/lattice temperature (<300 K) operation of n-MOSFET has been effectively studied by device research and integration professionals in CMOS logic and analog products from the early 1970s. The author of this book previously composed an e-book [1] in this area where he and his co-authors performed original simulation and modeling work on MOSFET threshold voltage and demonstrated that through efficient  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Nabil Shovon Ashraf
ISBN: 9781681733869 1681733862
OCLC Number: 1047603338
Description: 1 online resource (xi, 77 pages) : illustrations
Contents: 1. Introduction 2. Historical perspectives of scaled MOSFET evolution 3. Simulation results of on-state drain current and subthreshold drain current at substrate temperatures below 300 K --
3.1 Modeling equations to derive on-state drain current as a function of drain voltage for different gate voltages operated at reduced substrate temperatures below 300 K --
3.1.1 Modeling of substrate or bulk mobility as a function of substrate temperature for 1 [mu]m channel length MOSFET --
3.1.2 Modeling of drain current as a function of drain voltage for different gate voltage biases at different substrate temperatures --
3.1.3 Modeling of drain current as a function of substrate temperatures for different gate voltage and drain biases conditions for a long-channel n-MOSFET --
3.2 Drain current as a function of gate voltage for a fixed low-drain voltage at different substrate temperatures for the 1 [mu]m channel length n-MOSFET [mu]m 4. Simulation results on substrate mobility and on-channel mobility of conventional long-channel n-MOSFET at substrate temperatures 300 K and below --
4.1 Electron mobility in p-type substrate of silicon varying with substrate acceptor doping concentrations for different substrate temperatures --
4.2 Simulation results of electron carrier mobility at the surface of an n-channel MOSFET for different substrate temperatures --
4.2.1 Modeling equations for extraction of surface mobility as a function of vertical effective field 5. Simulation outcomes of subthreshold slope factor or coefficient for different substrate temperatures at the vicinity of a subthreshold region to deep subthreshold region of a long-channel n-MOSFET 6. Review of scaled device architectures for their feasibility to low temperature operation simulation perspectives of the author's current research --
6.1 Silicon nanowire transistor performance analysis with consideration of low-temperature operation --
6.2 Negative capacitance ferroelectric Fet (Ncfet) performance analysis with consideration of low-temperature operation 7. Summary of research results and conclusions --
References --
Author's biography.
Series Title: Synthesis lectures on emerging engineering technologies, #10.
Responsibility: Nabil Shovon Ashraf.
More information:

Abstract:

Explores device parameters such as channel inversion carrier mobility and its characteristic evolution. This book is the first to illustrate that a single subthreshold slope value is erroneous and at  Read more...

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


\n\n

Primary Entity<\/h3>\n
<http:\/\/www.worldcat.org\/oclc\/1047603338<\/a>> # Low substrate temperature modeling outlook of scaled n-MOSFET<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:MediaObject<\/a>, schema:Book<\/a>, schema:CreativeWork<\/a> ;\u00A0\u00A0\u00A0\nlibrary:oclcnum<\/a> \"1047603338<\/span>\" ;\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/id.loc.gov\/vocabulary\/countries\/cau<\/a>> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5555842509#Thing\/silicon_nanowire_fet<\/a>> ; # silicon nanowire FET<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5555842509#Topic\/metal_oxide_semiconductor_field_effect_transistors<\/a>> ; # Metal oxide semiconductor field-effect transistors<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5555842509#Thing\/on_state_drain_current<\/a>> ; # on-state drain current<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/dewey.info\/class\/621.59\/e23\/<\/a>> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5555842509#Thing\/bulk_mobility<\/a>> ; # bulk mobility<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5555842509#Thing\/subthreshold_slope<\/a>> ; # subthreshold slope<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5555842509#Thing\/substrate_temperature<\/a>> ; # substrate temperature<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5555842509#Thing\/ferroelectric_fet<\/a>> ; # ferroelectric FET<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5555842509#Thing\/tunnel_fet<\/a>> ; # Tunnel FET<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5555842509#Thing\/surface_potential<\/a>> ; # surface potential<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5555842509#Topic\/low_temperature_engineering<\/a>> ; # Low temperature engineering<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5555842509#Thing\/subthreshold_leakage_current<\/a>> ; # subthreshold leakage current<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5555842509#Thing\/inversion_charge_density<\/a>> ; # inversion charge density<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5555842509#Thing\/channel_mobility<\/a>> ; # channel mobility<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5555842509#Thing\/threshold_voltage<\/a>> ; # threshold voltage<\/span>\n\u00A0\u00A0\u00A0\nschema:author<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/5555842509#Person\/ashraf_nabil_shovon_1974<\/a>> ; # Nabil Shovon Ashraf<\/span>\n\u00A0\u00A0\u00A0\nschema:bookFormat<\/a> schema:EBook<\/a> ;\u00A0\u00A0\u00A0\nschema:copyrightYear<\/a> \"2018<\/span>\" ;\u00A0\u00A0\u00A0\nschema:datePublished<\/a> \"2018<\/span>\" ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"1. Introduction<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"Low substrate\/lattice temperature (<300 K) operation of n-MOSFET has been effectively studied by device research and integration professionals in CMOS logic and analog products from the early 1970s. The author of this book previously composed an e-book [1] in this area where he and his co-authors performed original simulation and modeling work on MOSFET threshold voltage and demonstrated that through efficient manipulation of threshold voltage values at lower substrate temperatures, superior degrees of reduction of subthreshold and off-state leakage current can be implemented in high-density logic and microprocessor chips fabricated in a silicon die. In this book, the author explores other device parameters such as channel inversion carrier mobility and its characteristic evolution as temperature on the die varies from 100-300 K. Channel mobility affects both on-state drain current and subthreshold drain current and both drain current behaviors at lower temperatures have been modeled accurately and simulated for a 1 m channel length n-MOSFET. In addition, subthreshold slope which is an indicator of how speedily the device drain current can be switched between near off current and maximum drain current is an important device attribute to model at lower operating substrate temperatures. This book is the first to illustrate the fact that a single subthreshold slope value which is generally reported in textbook plots and research articles, is erroneous and at lower gate voltage below inversion, subthreshold slope value exhibits a variation tendency on applied gate voltage below threshold, i.e., varying depletion layer and vertical field induced surface band bending variations at the MOSFET channel surface. The author also will critically review the state-of-the art effectiveness of certain device architectures presently prevalent in the semiconductor industry below 45 nm node from the perspectives of device physical analysis at lower substrate temperature operating conditions. The book concludes with an emphasis on modeling simulations, inviting the device professionals to meet the performance bottlenecks emanating from inceptives present at these lower temperatures of operation of today\'s 10 nm device architectures.<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:exampleOfWork<\/a> <http:\/\/worldcat.org\/entity\/work\/id\/5555842509<\/a>> ;\u00A0\u00A0\u00A0\nschema:genre<\/a> \"Electronic books<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:inLanguage<\/a> \"en<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isPartOf<\/a> <http:\/\/worldcat.org\/issn\/2381-1439<\/a>> ; # Synthesis lectures on emerging engineering technologies,<\/span>\n\u00A0\u00A0\u00A0\nschema:isPartOf<\/a> <http:\/\/worldcat.org\/issn\/2381-1412<\/a>> ; # Synthesis lectures on emerging engineering technologies ;<\/span>\n\u00A0\u00A0\u00A0\nschema:isSimilarTo<\/a> <http:\/\/worldcat.org\/entity\/work\/data\/5555842509#CreativeWork\/<\/a>> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Low substrate temperature modeling outlook of scaled n-MOSFET<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:productID<\/a> \"1047603338<\/span>\" ;\u00A0\u00A0\u00A0\nschema:url<\/a> <https:\/\/public.ebookcentral.proquest.com\/choice\/publicfullrecord.aspx?p=5456056<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <https:\/\/doi.org\/10.2200\/S00858ED1V01Y201805EET010<\/a>> ;\u00A0\u00A0\u00A0\nschema:workExample<\/a> <http:\/\/worldcat.org\/isbn\/9781681733869<\/a>> ;\u00A0\u00A0\u00A0\nschema:workExample<\/a> <http:\/\/dx.doi.org\/10.2200\/S00858ED1V01Y201805EET010<\/a>> ;\u00A0\u00A0\u00A0\nwdrs:describedby<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/1047603338<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Related Entities<\/h3>\n
<http:\/\/dewey.info\/class\/621.59\/e23\/<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/dx.doi.org\/10.2200\/S00858ED1V01Y201805EET010<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:IndividualProduct<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5555842509#Person\/ashraf_nabil_shovon_1974<\/a>> # Nabil Shovon Ashraf<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:birthDate<\/a> \"1974<\/span>\" ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Ashraf<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Nabil Shovon<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Nabil Shovon Ashraf<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5555842509#Thing\/bulk_mobility<\/a>> # bulk mobility<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"bulk mobility<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5555842509#Thing\/channel_mobility<\/a>> # channel mobility<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"channel mobility<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5555842509#Thing\/ferroelectric_fet<\/a>> # ferroelectric FET<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"ferroelectric FET<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5555842509#Thing\/inversion_charge_density<\/a>> # inversion charge density<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"inversion charge density<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5555842509#Thing\/on_state_drain_current<\/a>> # on-state drain current<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"on-state drain current<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5555842509#Thing\/silicon_nanowire_fet<\/a>> # silicon nanowire FET<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"silicon nanowire FET<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5555842509#Thing\/substrate_temperature<\/a>> # substrate temperature<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"substrate temperature<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5555842509#Thing\/subthreshold_leakage_current<\/a>> # subthreshold leakage current<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"subthreshold leakage current<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5555842509#Thing\/subthreshold_slope<\/a>> # subthreshold slope<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"subthreshold slope<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5555842509#Thing\/surface_potential<\/a>> # surface potential<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"surface potential<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5555842509#Thing\/threshold_voltage<\/a>> # threshold voltage<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"threshold voltage<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5555842509#Thing\/tunnel_fet<\/a>> # Tunnel FET<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Thing<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Tunnel FET<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5555842509#Topic\/low_temperature_engineering<\/a>> # Low temperature engineering<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Low temperature engineering<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/5555842509#Topic\/metal_oxide_semiconductor_field_effect_transistors<\/a>> # Metal oxide semiconductor field-effect transistors<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Metal oxide semiconductor field-effect transistors<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.loc.gov\/vocabulary\/countries\/cau<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\ndcterms:identifier<\/a> \"cau<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/entity\/work\/data\/5555842509#CreativeWork\/<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:CreativeWork<\/a> ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"Print version:<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isSimilarTo<\/a> <http:\/\/www.worldcat.org\/oclc\/1047603338<\/a>> ; # Low substrate temperature modeling outlook of scaled n-MOSFET<\/span>\n\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/isbn\/9781681733869<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:ProductModel<\/a> ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"1681733862<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"9781681733869<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/issn\/2381-1412<\/a>> # Synthesis lectures on emerging engineering technologies ;<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:PublicationSeries<\/a> ;\u00A0\u00A0\u00A0\nschema:hasPart<\/a> <http:\/\/www.worldcat.org\/oclc\/1047603338<\/a>> ; # Low substrate temperature modeling outlook of scaled n-MOSFET<\/span>\n\u00A0\u00A0\u00A0\nschema:issn<\/a> \"2381-1412<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Synthesis lectures on emerging engineering technologies ;<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/issn\/2381-1439<\/a>> # Synthesis lectures on emerging engineering technologies,<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:PublicationSeries<\/a> ;\u00A0\u00A0\u00A0\nschema:hasPart<\/a> <http:\/\/www.worldcat.org\/oclc\/1047603338<\/a>> ; # Low substrate temperature modeling outlook of scaled n-MOSFET<\/span>\n\u00A0\u00A0\u00A0\nschema:issn<\/a> \"2381-1439<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Synthesis lectures on emerging engineering technologies,<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n