skip to content
Machine Learners:Archaeology of a Data Practice. Preview this item
ClosePreview this item
Checking...

Machine Learners:Archaeology of a Data Practice.

Author: Adrian Mackenzie.
Publisher: MIT Press ©2017
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
Machine learning - programming computers to learn from data - has spread across scientific disciplines, media, entertainment, and government. Medical research, autonomous vehicles, credit transaction processing, computer gaming, recommendation systems, finance, surveillance, and robotics use machine learning. Machine learning devices (sometimes understood as scientific models, sometimes as operational algorithms)  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Additional Physical Format: Print version:
Adrian Mackenzie.
Machine Learners:Archaeology of a Data Practice.
MIT Press
(DLC) 2017005343
(OCoLC)972093403
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Adrian Mackenzie.
ISBN: 9780262342551 0262342553
OCLC Number: 1117112049
Event notes: 20180215.
Description: 1 online resource
Contents: Introduction : into the data --
Diagramming machines --
Vectorization and its consequences --
Machines finding functions --
N=[upside down A]X : probabilization and the taming of machines --
Patterns and differences --
Regularizing and materializing objects --
Propagating subject positions --
Conclusion : out of the data.

Abstract:

Machine learning - programming computers to learn from data - has spread across scientific disciplines, media, entertainment, and government. Medical research, autonomous vehicles, credit transaction processing, computer gaming, recommendation systems, finance, surveillance, and robotics use machine learning. Machine learning devices (sometimes understood as scientific models, sometimes as operational algorithms) anchor the field of data science. They have also become mundane mechanisms deeply embedded in a variety of systems and gadgets. In contexts from the everyday to the esoteric, machine learning is said to transform the nature of knowledge. In this book, Adrian Mackenzie investigates whether machine learning also transforms the practice of critical thinking. Mackenzie focuses on machine learners -- either humans and machines or human-machine relations -- situated among settings, data, and devices. The settings range from fMRI to Facebook; the data anything from cat images to DNA sequences; the devices include neural networks, support vector machines, and decision trees. He examines specific learning algorithms -- writing code and writing about code -- and develops an archaeology of operations that, following Foucault, views machine learning as a form of knowledge production and a strategy of power. Exploring layers of abstraction, data infrastructures, coding practices, diagrams, mathematical formalisms, and the social organization of machine learning, Mackenzie traces the mostly invisible architecture of one of the central zones of contemporary technological cultures. -- Provided by publisher.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/1117112049> # Machine Learners:Archaeology of a Data Practice.
    a schema:MediaObject, schema:Book, schema:CreativeWork ;
    library:oclcnum "1117112049" ;
    schema:about <http://experiment.worldcat.org/entity/work/data/4062928822#Topic/information_theorie_de_l> ; # Information, Théorie de l'
    schema:about <http://experiment.worldcat.org/entity/work/data/4062928822#Topic/apprentissage_automatique> ; # Apprentissage automatique
    schema:about <http://experiment.worldcat.org/entity/work/data/4062928822#Topic/machine_learning_philosophy> ; # Machine learning--Philosophy
    schema:about <http://dewey.info/class/003.54/e23/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/4062928822#Topic/information_theory> ; # Information theory
    schema:about <http://experiment.worldcat.org/entity/work/data/4062928822#Topic/electronic_data_processing_philosophy> ; # Electronic data processing--Philosophy
    schema:about <http://experiment.worldcat.org/entity/work/data/4062928822#Topic/maschinelles_lernen> ; # Maschinelles Lernen
    schema:about <http://experiment.worldcat.org/entity/work/data/4062928822#Topic/intelligence_artificielle> ; # Intelligence artificielle
    schema:bookFormat schema:EBook ;
    schema:creator <http://experiment.worldcat.org/entity/work/data/4062928822#Person/adrian_mackenzie> ; # Adrian Mackenzie.
    schema:description "Machine learning - programming computers to learn from data - has spread across scientific disciplines, media, entertainment, and government. Medical research, autonomous vehicles, credit transaction processing, computer gaming, recommendation systems, finance, surveillance, and robotics use machine learning. Machine learning devices (sometimes understood as scientific models, sometimes as operational algorithms) anchor the field of data science. They have also become mundane mechanisms deeply embedded in a variety of systems and gadgets. In contexts from the everyday to the esoteric, machine learning is said to transform the nature of knowledge. In this book, Adrian Mackenzie investigates whether machine learning also transforms the practice of critical thinking. Mackenzie focuses on machine learners -- either humans and machines or human-machine relations -- situated among settings, data, and devices. The settings range from fMRI to Facebook; the data anything from cat images to DNA sequences; the devices include neural networks, support vector machines, and decision trees. He examines specific learning algorithms -- writing code and writing about code -- and develops an archaeology of operations that, following Foucault, views machine learning as a form of knowledge production and a strategy of power. Exploring layers of abstraction, data infrastructures, coding practices, diagrams, mathematical formalisms, and the social organization of machine learning, Mackenzie traces the mostly invisible architecture of one of the central zones of contemporary technological cultures. -- Provided by publisher."@en ;
    schema:description "Introduction : into the data -- Diagramming machines -- Vectorization and its consequences -- Machines finding functions -- N=[upside down A]X : probabilization and the taming of machines -- Patterns and differences -- Regularizing and materializing objects -- Propagating subject positions -- Conclusion : out of the data."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/4062928822> ;
    schema:inLanguage "en" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/972093403> ;
    schema:name "Machine Learners:Archaeology of a Data Practice."@en ;
    schema:productID "1117112049" ;
    schema:url <https://ieeexplore.ieee.org/servlet/opac?bknumber=8269017> ;
    schema:workExample <http://worldcat.org/isbn/9780262342551> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/1117112049> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/4062928822#Person/adrian_mackenzie> # Adrian Mackenzie.
    a schema:Person ;
    schema:name "Adrian Mackenzie." ;
    .

<http://experiment.worldcat.org/entity/work/data/4062928822#Topic/apprentissage_automatique> # Apprentissage automatique
    a schema:Intangible ;
    schema:name "Apprentissage automatique"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/4062928822#Topic/electronic_data_processing_philosophy> # Electronic data processing--Philosophy
    a schema:Intangible ;
    schema:name "Electronic data processing--Philosophy"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/4062928822#Topic/information_theorie_de_l> # Information, Théorie de l'
    a schema:Intangible ;
    schema:name "Information, Théorie de l'"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/4062928822#Topic/information_theory> # Information theory
    a schema:Intangible ;
    schema:name "Information theory"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/4062928822#Topic/intelligence_artificielle> # Intelligence artificielle
    a schema:Intangible ;
    schema:name "Intelligence artificielle"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/4062928822#Topic/machine_learning_philosophy> # Machine learning--Philosophy
    a schema:Intangible ;
    schema:name "Machine learning--Philosophy"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/4062928822#Topic/maschinelles_lernen> # Maschinelles Lernen
    a schema:Intangible ;
    schema:name "Maschinelles Lernen"@en ;
    .

<http://worldcat.org/isbn/9780262342551>
    a schema:ProductModel ;
    schema:isbn "0262342553" ;
    schema:isbn "9780262342551" ;
    .

<http://www.worldcat.org/oclc/972093403>
    a schema:CreativeWork ;
    rdfs:label "Machine Learners:Archaeology of a Data Practice." ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/1117112049> ; # Machine Learners:Archaeology of a Data Practice.
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.