Machine Learning Algorithms. (eBook, 2017) [WorldCat.org]
skip to content
Machine Learning Algorithms. Preview this item
ClosePreview this item
Checking...

Machine Learning Algorithms.

Author: Giuseppe Bonaccorso
Publisher: Packt Publishing, 2017.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
Build strong foundation for entering the world of Machine Learning and data science with the help of this comprehensive guide About This Book Get started in the field of Machine Learning with the help of this solid, concept-rich, yet highly practical guide. Your one-stop solution for everything that matters in mastering the whats and whys of Machine Learning algorithms and their implementation. Get a solid  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Bonaccorso, Giuseppe.
Machine Learning Algorithms.
Packt Publishing, 2017
(OCoLC)991683742
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Giuseppe Bonaccorso
ISBN: 1785884514 9781785884511
OCLC Number: 999648897
Description: 1 online resource
Contents: Cover --
Copyright --
Credits --
About the Author --
About the Reviewers --
www.PacktPub.com --
Customer Feedback --
Table of Contents --
Preface --
Chapter 1: A Gentle Introduction to Machine Learning --
Introduction --
classic and adaptive machines --
Only learning matters --
Supervised learning --
Unsupervised learning --
Reinforcement learning --
Beyond machine learning --
deep learning and bio-inspired adaptive systems --
Machine learning and big data --
Further reading --
Summary --
Chapter 2: Important Elements in Machine Learning --
Data formats --
Multiclass strategies --
One-vs-all --
One-vs-one --
Learnability --
Underfitting and overfitting --
Error measures --
PAC learning --
Statistical learning approaches --
MAP learning --
Maximum-likelihood learning --
Elements of information theory --
References --
Summary --
Chapter 3: Feature Selection and Feature Engineering --
scikit-learn toy datasets --
Creating training and test sets --
Managing categorical data --
Managing missing features --
Data scaling and normalization --
Feature selection and filtering --
Principal component analysis --
Non-negative matrix factorization --
Sparse PCA --
Kernel PCA --
Atom extraction and dictionary learning --
References --
Summary --
Chapter 4: Linear Regression --
Linear models --
A bidimensional example --
Linear regression with scikit-learn and higher dimensionality --
Regressor analytic expression --
Ridge, Lasso, and ElasticNet --
Robust regression with random sample consensus --
Polynomial regression --
Isotonic regression --
References --
Summary --
Chapter 5: Logistic Regression --
Linear classification --
Logistic regression --
Implementation and optimizations --
Stochastic gradient descent algorithms --
Finding the optimal hyperparameters through grid search --
Classification metrics --
ROC curve --
Summary --
Chapter 6: Naive Bayes. Bayes' theorem --
Naive Bayes classifiers --
Naive Bayes in scikit-learn --
Bernoulli naive Bayes --
Multinomial naive Bayes --
Gaussian naive Bayes --
References --
Summary --
Chapter 7: Support Vector Machines --
Linear support vector machines --
scikit-learn implementation --
Linear classification --
Kernel-based classification --
Radial Basis Function --
Polynomial kernel --
Sigmoid kernel --
Custom kernels --
Non-linear examples --
Controlled support vector machines --
Support vector regression --
References --
Summary --
Chapter 8: Decision Trees and Ensemble Learning --
Binary decision trees --
Binary decisions --
Impurity measures --
Gini impurity index --
Cross-entropy impurity index --
Misclassification impurity index --
Feature importance --
Decision tree classification with scikit-learn --
Ensemble learning --
Random forests --
Feature importance in random forests --
AdaBoost --
Gradient tree boosting --
Voting classifier --
References --
Summary --
Chapter 9: Clustering Fundamentals --
Clustering basics --
K-means --
Finding the optimal number of clusters --
Optimizing the inertia --
Silhouette score --
Calinski-Harabasz index --
Cluster instability --
DBSCAN --
Spectral clustering --
Evaluation methods based on the ground truth --
Homogeneity --
Completeness --
Adjusted rand index --
References --
Summary --
Chapter 10: Hierarchical Clustering --
Hierarchical strategies --
Agglomerative clustering --
Dendrograms --
Agglomerative clustering in scikit-learn --
Connectivity constraints --
References --
Summary --
Chapter 11: Introduction to Recommendation Systems --
Naive user-based systems --
User-based system implementation with scikit-learn --
Content-based systems --
Model-free (or memory-based) collaborative filtering --
Model-based collaborative filtering --
Singular Value Decomposition strategy --
Alternating least squares strategy. Alternating least squares with Apache Spark MLlib --
References --
Summary --
Chapter 12: Introduction to Natural Language Processing --
NLTK and built-in corpora --
Corpora examples --
The bag-of-words strategy --
Tokenizing --
Sentence tokenizing --
Word tokenizing --
Stopword removal --
Language detection --
Stemming --
Vectorizing --
Count vectorizing --
N-grams --
Tf-idf vectorizing --
A sample text classifier based on the Reuters corpus --
References --
Summary --
Chapter 13: Topic Modeling and Sentiment Analysis in NLP --
Topic modeling --
Latent semantic analysis --
Probabilistic latent semantic analysis --
Latent Dirichlet Allocation --
Sentiment analysis --
VADER sentiment analysis with NLTK --
References --
Summary --
Chapter 14: A Brief Introduction to Deep Learning and TensorFlow --
Deep learning at a glance --
Artificial neural networks --
Deep architectures --
Fully connected layers --
Convolutional layers --
Dropout layers --
Recurrent neural networks --
A brief introduction to TensorFlow --
Computing gradients --
Logistic regression --
Classification with a multi-layer perceptron --
Image convolution --
A quick glimpse inside Keras --
References --
Summary --
Chapter 15: Creating a Machine Learning Architecture --
Machine learning architectures --
Data collection --
Normalization --
Dimensionality reduction --
Data augmentation --
Data conversion --
Modeling/Grid search/Cross-validation --
Visualization --
scikit-learn tools for machine learning architectures --
Pipelines --
Feature unions --
References --
Summary --
Index.

Abstract:

Helps you build a strong foundation for entering the world of machine learning and data science. This book shows you how to acquaint yourself with important elements of Machine Learning; understand  Read more...

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Related Subjects:(1)

User lists with this item (1)

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.