skip to content
Machine Learning Quick Reference : Quick and Essential Machine Learning Hacks for Training Smart Data Models. Preview this item
ClosePreview this item
Checking...

Machine Learning Quick Reference : Quick and Essential Machine Learning Hacks for Training Smart Data Models.

Author: Rahul Kumar
Publisher: Birmingham : Packt Publishing Ltd, 2019.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
Machine learning involves development and training of models used to predict future outcomes. This book is a practical guide to all the tips and tricks related to machine learning. It includes hands-on, easy to access techniques on topics like model selection, performance tuning, training neural networks, time series analysis and a lot more.
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Kumar, Rahul.
Machine Learning Quick Reference : Quick and Essential Machine Learning Hacks for Training Smart Data Models.
Birmingham : Packt Publishing Ltd, ©2019
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Rahul Kumar
ISBN: 9781788831611 1788831616
OCLC Number: 1086042416
Notes: Importing the library
Description: 1 online resource (283 pages)
Contents: Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Quantifying Learning Algorithms; Statistical models; Learning curve; Machine learning; Wright's model; Curve fitting; Residual; Statistical modeling --
the two cultures of Leo Breiman; Training data development data --
test data; Size of the training, development, and test set; Bias-variance trade off; Regularization; Ridge regression (L2); Least absolute shrinkage and selection operator ; Cross-validation and model selection; K-fold cross-validation Model selection using cross-validation0.632 rule in bootstrapping; Model evaluation; Confusion matrix; Receiver operating characteristic curve; Area under ROC; H-measure; Dimensionality reduction; Summary; Chapter 2: Evaluating Kernel Learning; Introduction to vectors; Magnitude of the vector; Dot product; Linear separability; Hyperplanes ; SVM; Support vector; Kernel trick; Kernel; Back to Kernel trick; Kernel types; Linear kernel; Polynomial kernel; Gaussian kernel; SVM example and parameter optimization through grid search; Summary; Chapter 3: Performance in Ensemble Learning What is ensemble learning?Ensemble methods ; Bootstrapping; Bagging; Decision tree; Tree splitting; Parameters of tree splitting; Random forest algorithm; Case study; Boosting; Gradient boosting; Parameters of gradient boosting; Summary; Chapter 4: Training Neural Networks; Neural networks; How a neural network works; Model initialization; Loss function; Optimization; Computation in neural networks; Calculation of activation for H1; Backward propagation; Activation function; Types of activation functions; Network initialization; Backpropagation; Overfitting; Prevention of overfitting in NNs Vanishing gradient Overcoming vanishing gradient; Recurrent neural networks; Limitations of RNNs; Use case; Summary; Chapter 5: Time Series Analysis; Introduction to time series analysis; White noise; Detection of white noise in a series; Random walk; Autoregression; Autocorrelation; Stationarity; Detection of stationarity; AR model; Moving average model; Autoregressive integrated moving average; Optimization of parameters; AR model; ARIMA model; Anomaly detection; Summary; Chapter 6: Natural Language Processing; Text corpus; Sentences; Words; Bags of words; TF-IDF Executing the count vectorizerExecuting TF-IDF in Python; Sentiment analysis; Sentiment classification; TF-IDF feature extraction; Count vectorizer bag of words feature extraction; Model building count vectorization; Topic modeling ; LDA architecture; Evaluating the model; Visualizing the LDA; The Naive Bayes technique in text classification; The Bayes theorem; How the Naive Bayes classifier works; Summary; Chapter 7: Temporal and Sequential Pattern Discovery; Association rules; Apriori algorithm; Finding association rules; Frequent pattern growth; Frequent pattern tree growth; Validation

Abstract:

Machine learning involves development and training of models used to predict future outcomes. This book is a practical guide to all the tips and tricks related to machine learning. It includes hands-on, easy to access techniques on topics like model selection, performance tuning, training neural networks, time series analysis and a lot more.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/1086042416> # Machine Learning Quick Reference : Quick and Essential Machine Learning Hacks for Training Smart Data Models.
    a schema:CreativeWork, schema:Book, schema:MediaObject ;
    library:oclcnum "1086042416" ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/8926490641#Place/birmingham> ; # Birmingham
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/enk> ;
    rdfs:comment "Warning: This malformed URI has been treated as a string - 'https://img1.od-cdn.com/ImageType-100/6135-1/{7ABC99E0-7AD9-414B-9DA2-CCFCF09B4A73}Img100.jpg'" ;
    schema:about <http://experiment.worldcat.org/entity/work/data/8926490641#Topic/computers_general> ; # COMPUTERS--General
    schema:about <http://dewey.info/class/006.31/e23/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/8926490641#Topic/machine_learning> ; # Machine learning
    schema:bookFormat schema:EBook ;
    schema:creator <http://experiment.worldcat.org/entity/work/data/8926490641#Person/kumar_rahul> ; # Rahul Kumar
    schema:datePublished "2019" ;
    schema:description "Machine learning involves development and training of models used to predict future outcomes. This book is a practical guide to all the tips and tricks related to machine learning. It includes hands-on, easy to access techniques on topics like model selection, performance tuning, training neural networks, time series analysis and a lot more."@en ;
    schema:description "Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: Quantifying Learning Algorithms; Statistical models; Learning curve; Machine learning; Wright's model; Curve fitting; Residual; Statistical modeling -- the two cultures of Leo Breiman; Training data development data -- test data; Size of the training, development, and test set; Bias-variance trade off; Regularization; Ridge regression (L2); Least absolute shrinkage and selection operator ; Cross-validation and model selection; K-fold cross-validation"@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/8926490641> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isSimilarTo <http://worldcat.org/entity/work/data/8926490641#CreativeWork/machine_learning_quick_reference_quick_and_essential_machine_learning_hacks_for_training_smart_data_models> ;
    schema:name "Machine Learning Quick Reference : Quick and Essential Machine Learning Hacks for Training Smart Data Models."@en ;
    schema:productID "1086042416" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/1086042416#PublicationEvent/birmingham_packt_publishing_ltd_2019> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/8926490641#Agent/packt_publishing_ltd> ; # Packt Publishing Ltd
    schema:url <https://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=5675581> ;
    schema:url <https://www.overdrive.com/search?q=7ABC99E0-7AD9-414B-9DA2-CCFCF09B4A73> ;
    schema:url <https://samples.overdrive.com/?crid=7abc99e0-7ad9-414b-9da2-ccfcf09b4a73&.epub-sample.overdrive.com> ;
    schema:url "https://img1.od-cdn.com/ImageType-100/6135-1/{7ABC99E0-7AD9-414B-9DA2-CCFCF09B4A73}Img100.jpg" ;
    schema:url <http://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781788831611> ;
    schema:url <https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2018975> ;
    schema:workExample <http://worldcat.org/isbn/9781788831611> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/1086042416> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/8926490641#Agent/packt_publishing_ltd> # Packt Publishing Ltd
    a bgn:Agent ;
    schema:name "Packt Publishing Ltd" ;
    .

<http://experiment.worldcat.org/entity/work/data/8926490641#Person/kumar_rahul> # Rahul Kumar
    a schema:Person ;
    schema:familyName "Kumar" ;
    schema:givenName "Rahul" ;
    schema:name "Rahul Kumar" ;
    .

<http://experiment.worldcat.org/entity/work/data/8926490641#Topic/computers_general> # COMPUTERS--General
    a schema:Intangible ;
    schema:name "COMPUTERS--General"@en ;
    .

<http://worldcat.org/entity/work/data/8926490641#CreativeWork/machine_learning_quick_reference_quick_and_essential_machine_learning_hacks_for_training_smart_data_models>
    a schema:CreativeWork ;
    rdfs:label "Machine Learning Quick Reference : Quick and Essential Machine Learning Hacks for Training Smart Data Models." ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/1086042416> ; # Machine Learning Quick Reference : Quick and Essential Machine Learning Hacks for Training Smart Data Models.
    .

<http://worldcat.org/isbn/9781788831611>
    a schema:ProductModel ;
    schema:isbn "1788831616" ;
    schema:isbn "9781788831611" ;
    .

<http://www.worldcat.org/title/-/oclc/1086042416>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
    schema:about <http://www.worldcat.org/oclc/1086042416> ; # Machine Learning Quick Reference : Quick and Essential Machine Learning Hacks for Training Smart Data Models.
    schema:dateModified "2019-08-14" ;
    void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.