skip to content
Covid-19 virus
COVID-19 Resources

Reliable information about the coronavirus (COVID-19) is available from the World Health Organization (current situation, international travel). Numerous and frequently-updated resource results are available from this WorldCat.org search. OCLC’s WebJunction has pulled together information and resources to assist library staff as they consider how to handle coronavirus issues in their communities.

Image provided by: CDC/ Alissa Eckert, MS; Dan Higgins, MAM
Medical image computing and computer assisted intervention -- MICCAI 2019 : 22nd International Conference, Shenzhen, China, October 13-17, 2019, Proceedings. Part V Preview this item
ClosePreview this item
Checking...

Medical image computing and computer assisted intervention -- MICCAI 2019 : 22nd International Conference, Shenzhen, China, October 13-17, 2019, Proceedings. Part V

Author: Dinggang ShenTianming Liu, Dr.Terry M PetersLawrence StaibCaroline EssertAll authors
Publisher: Cham, Switzerland : Springer, 2019.
Series: Lecture notes in computer science, 11768.; LNCS sublibrary., SL 6,, Image processing, computer vision, pattern recognition, and graphics.
Edition/Format:   eBook : Document : Conference publication : EnglishView all editions and formats
Summary:
The six-volume set LNCS 11764, 11765, 11766, 11767, 11768, and 11769 constitutes the refereed proceedings of the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019, held in Shenzhen, China, in October 2019. The 539 revised full papers presented were carefully reviewed and selected from 1730 submissions in a double-blind review process. The papers are organized in  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Conference papers and proceedings
Congresses
Material Type: Conference publication, Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Dinggang Shen; Tianming Liu, Dr.; Terry M Peters; Lawrence Staib; Caroline Essert; Xiangyun Sean Zhou; Pew-Thian Yap; Ali Khan
ISBN: 9783030322540 3030322548
OCLC Number: 1123174826
Notes: International conference proceedings.
Includes author index.
Description: 1 online resource (xxxvi, 695 pages) : illustrations (some color).
Contents: Computer Assisted Interventions.- Robust Cochlear Modiolar Axis Detection in CT.- Learning to Avoid Poor Images: Towards Task-aware C-arm Cone-beam CT Trajectories.- Optimizing Clearance of Bézier Spline Trajectories for Minimally-Invasive Surgery.- Direct Visual and Haptic Volume Rendering of Medical Data Sets for an Immersive Exploration in Virtual Reality.- Triplet Feature Learning on Endoscopic Video Manifold for Real-time Gastrointestinal Image Retargeting.- A Novel Endoscopic Navigation System: Simultaneous Endoscope and Radial Ultrasound Probe Tracking Without External Trackers.- An Extremely Fast and Precise Convolutional Neural Network for Recognition and Localization of Cataract Surgical Tools.- Semi-autonomous Robotic Anastomoses of Vaginal Cuffs using Marker Enhanced 3D Imaging and Path Planning.- Augmented Reality "X-Ray Vision" for Laparoscopic Surgery using Optical See-Through Head-Mounted Display.- Interactive Endoscopy: A Next-Generation, Streamlined User Interface for Lung Surgery Navigation.- Non-invasive Assessment of In Vivo Auricular Cartilage by Ultrashort Echo Time (UTE) T2* Mapping.- INN: Inflated Neural Networks for IPMN Diagnosis.- Development of an Multi-objective Optimized Planning Method for Microwave Liver Tumor Ablation.- Generating large labeled data sets for laparoscopic image processing tasks using unpaired image-to-image translation.- Mask-MCNet: Instance Segmentation in 3D Point Cloud of Intra-oral Scans.- Physics-based Deep Neural Network for Augmented Reality during Liver Surgery.- Detecting Cannabis-Associated Cognitive Impairment using Resting-state fNIRS.- Cross-Domain Conditional Generative Adversarial Networks for Stereoscopic Hyperrealism in Surgical Training.- A Free-view, 3D Gaze-Guided Robotic Scrub Nurse.- Haptic Modes for Multiparameter Control in Robotic Surgery.- Learning to Detect Collisions for Continuum Manipulators without a Prior Model.- Simulation of Balloon-Expandable Coronary Stent Apposition with Plastic Beam Elements.- Virtual Cardiac Surgical Planning through Hemodynamics Simulation and Design Optimization of Fontan Grafts.- 3D Modelling of the residual freezing for renal cryoablation simulation and prediction.- A generative model of hyperelastic strain energy density functions for real-time simulation of brain tissue deformation.- Variational Mandible Shape Completion for Virtual Surgical Planning.- Markerless Image-to-Face Registration for Untethered Augmented Reality in Head and Neck Surgery.- Towards a first mixed-reality first person point of view needle navigation system.- Concept-Centric Visual Turing Tests for Method Validation.- Transferring from ex-vivo to in-vivo: Instrument Localization in 3D Cardiac Ultrasound Using Pyramid-UNet with Hybrid Loss.- A Sparsely Distributed Intra-cardial Ultrasonic Array for Real-time Endocardial Mapping.- FetusMap: Fetal Pose Estimation in 3D Ultrasound.- Agent with Warm Start and Active Termination for Plane Localization in 3D Ultrasound.- Learning and Understanding Deep Spatio-Temporal Representations from Free-Hand Fetal Ultrasound Sweeps.- User guidance for point-of-care echocardiography using multi-task deep neural network.- Integrating 3D Geometry of Organ for Improving Medical Imaging Segmentation.- Estimating Reference Bony Shape Model for Personalized Surgical Reconstruction of Posttraumatic Facial Defects.- A New Approach of Predicting Facial Changes following Orthognathic Surgery using Realistic Lip Sliding Effect.- An Automatic Approach to Reestablish Final Dental Occlusion for 1-Piece Maxillary Orthognathic Surgery.- MIC meets CAI.- A Two-stage Framework for Real-time Guidewire Endpoint Localization.- Investigating the role of VR in a simulation-based medical planning system for coronary interventions.- Learned Full-sampling Reconstruction.- A deep regression model for seed localization in prostate brachytherapy.- Model-Based Surgical Recommendations for Optimal Placement of Epiretinal Implants.- Towards Multiple Instance Learning and Hermann Weyl's Discrepancy for Robust Image-Guided Bronchoscopic Intervention.- Learning Where to Look While Tracking Instruments in Robot-assisted Surgery.- Efficient Soft-Constrained Clustering for Group-Based Labeling.- Leveraging Other Datasets for Medical Imaging Classification: Evaluation of Transfer, Multi-task and Semi-supervised Learning.- Incorporating Temporal Prior from Motion Flow for Instrument Segmentation in Minimally Invasive Surgery Video.- Hard Frame Detection and Online Mapping for Surgical Phase Recognition.- Automated Surgical Activity Recognition with One Labeled Sequence.- Using 3D Convolutional Neural Networks to learn spatiotemporal features for automatic surgical gesture recognition in video.- Surgical Skill Assessment on In-Vivo Clinical Data via the Clearness of Operating Field.- Graph Neural Network for Interpreting Task-fMRI Biomarkers.- Achieving Accurate Segmentation of Nasopharyngeal Carcinoma in MR Images through Recurrent Attention.- Brain Dynamics Through the Lens of Statistical Mechanics by Unifying Structure and Function.- Synthesis and Inpainting-based MR-CT Registration for Image-Guided Thermal Ablation of Liver Tumors.- CFEA: Collaborative Feature Ensembling Adaptation for Domain Adaptation in Unsupervised Optic Disc and Cup Segmentation.- Gastric cancer detection from endoscopic images using synthesis by GAN.- Deep Local-Global Refinement Network for Stent Analysis in IVOCT Images.- Generalized Non-Rigid Point Set Registration with Hybrid Mixture Models Considering Anisotropic Positional Uncertainties.- Mixed-Supervision Multilevel GAN for Image Quality Enhancement.- Combined Learning for Similar Tasks with Domain-Switching Networks.- Real-time 3D reconstruction of colonoscopic surfaces for determining missing regions.- Human Pose Estimation on Privacy-Preserving Low-Resolution Depth Images.- A Mesh-Aware Ball-Pivoting Algorithm for Generating the Virtual Arachnoid Mater.- Attenuation Imaging with Pulse-Echo Ultrasound based on an Acoustic Reflector.- SWTV-ACE: Spatially Weighted Regularization based Attenuation Coefficient Estimation Method for Hepatic Steatosis Detection.- Deep Learning-based Universal Beamformer for Ultrasound Imaging.- Towards whole placenta segmentation at late gestation using multi-view ultrasound images.- Single Shot Needle Tip Localization in 2D Ultrasound.- Discriminative Correlation Filter Network for Robust Landmark Tracking in Ultrasound Guided Intervention.- Echocardiography Segmentation by Quality Translation using Anatomically Constrained CycleGAN.- Matwo-CapsNet: a Multi-Label Semantic Segmentation Capsules Network.- LumiPath --
Towards Real-time Physically-based Rendering on Embedded Devices.- An Integrated Multi-Physics Finite Element Modeling Framework for Deep Brain Stimulation: Preliminary Study on Impact of Brain Shift on Neuronal Pathways.
Series Title: Lecture notes in computer science, 11768.; LNCS sublibrary., SL 6,, Image processing, computer vision, pattern recognition, and graphics.
Other Titles: MICCAI 2019
Responsibility: Dinggang Shen, Tianming Liu, Terry M. Peters, Lawrence H. Staib, Caroline Essert, Sean Zhou, Pew-Thian Yap, Ali Khan (eds.).

Abstract:

The six-volume set LNCS 11764, 11765, 11766, 11767, 11768, and 11769 constitutes the refereed proceedings of the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019, held in Shenzhen, China, in October 2019. The 539 revised full papers presented were carefully reviewed and selected from 1730 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: optical imaging; endoscopy; microscopy. Part II: image segmentation; image registration; cardiovascular imaging; growth, development, atrophy and progression. Part III: neuroimage reconstruction and synthesis; neuroimage segmentation; diffusion weighted magnetic resonance imaging; functional neuroimaging (fMRI); miscellaneous neuroimaging. Part IV: shape; prediction; detection and localization; machine learning; computer-aided diagnosis; image reconstruction and synthesis. Part V: computer assisted interventions; MIC meets CAI. Part VI: computed tomography; X-ray imaging.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


\n\n

Primary Entity<\/h3>\n
<http:\/\/www.worldcat.org\/oclc\/1123174826<\/a>> # Medical image computing and computer assisted intervention -- MICCAI 2019 : 22nd International Conference, Shenzhen, China, October 13-17, 2019, Proceedings. Part V<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:MediaObject<\/a>, schema:Book<\/a>, schema:CreativeWork<\/a> ;\u00A0\u00A0\u00A0\nlibrary:oclcnum<\/a> \"1123174826<\/span>\" ;\u00A0\u00A0\u00A0\nlibrary:placeOfPublication<\/a> <http:\/\/id.loc.gov\/vocabulary\/countries\/sz<\/a>> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/9621268169#Topic\/diagnostic_imaging_data_processing<\/a>> ; # Diagnostic imaging--Data processing<\/span>\n\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/dewey.info\/class\/616.0757\/e23\/<\/a>> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/9621268169#Topic\/computer_assisted_surgery<\/a>> ; # Computer-assisted surgery<\/span>\n\u00A0\u00A0\u00A0\nschema:alternateName<\/a> \"MICCAI 2019<\/span>\" ;\u00A0\u00A0\u00A0\nschema:bookFormat<\/a> schema:EBook<\/a> ;\u00A0\u00A0\u00A0\nschema:creator<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/9621268169#Meeting\/international_conference_on_medical_image_computing_and_computer_assisted_intervention_22nd_2019_shenzhen_shi_china<\/a>> ; # International Conference on Medical Image Computing and Computer-Assisted Intervention (22nd : 2019 : Shenzhen Shi, China)<\/span>\n\u00A0\u00A0\u00A0\nschema:datePublished<\/a> \"2019<\/span>\" ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"Computer Assisted Interventions.- Robust Cochlear Modiolar Axis Detection in CT.- Learning to Avoid Poor Images: Towards Task-aware C-arm Cone-beam CT Trajectories.- Optimizing Clearance of B\u00E9zier Spline Trajectories for Minimally-Invasive Surgery.- Direct Visual and Haptic Volume Rendering of Medical Data Sets for an Immersive Exploration in Virtual Reality.- Triplet Feature Learning on Endoscopic Video Manifold for Real-time Gastrointestinal Image Retargeting.- A Novel Endoscopic Navigation System: Simultaneous Endoscope and Radial Ultrasound Probe Tracking Without External Trackers.- An Extremely Fast and Precise Convolutional Neural Network for Recognition and Localization of Cataract Surgical Tools.- Semi-autonomous Robotic Anastomoses of Vaginal Cuffs using Marker Enhanced 3D Imaging and Path Planning.- Augmented Reality \"X-Ray Vision\" for Laparoscopic Surgery using Optical See-Through Head-Mounted Display.- Interactive Endoscopy: A Next-Generation, Streamlined User Interface for Lung Surgery Navigation.- Non-invasive Assessment of In Vivo Auricular Cartilage by Ultrashort Echo Time (UTE) T2* Mapping.- INN: Inflated Neural Networks for IPMN Diagnosis.- Development of an Multi-objective Optimized Planning Method for Microwave Liver Tumor Ablation.- Generating large labeled data sets for laparoscopic image processing tasks using unpaired image-to-image translation.- Mask-MCNet: Instance Segmentation in 3D Point Cloud of Intra-oral Scans.- Physics-based Deep Neural Network for Augmented Reality during Liver Surgery.- Detecting Cannabis-Associated Cognitive Impairment using Resting-state fNIRS.- Cross-Domain Conditional Generative Adversarial Networks for Stereoscopic Hyperrealism in Surgical Training.- A Free-view, 3D Gaze-Guided Robotic Scrub Nurse.- Haptic Modes for Multiparameter Control in Robotic Surgery.- Learning to Detect Collisions for Continuum Manipulators without a Prior Model.- Simulation of Balloon-Expandable Coronary Stent Apposition with Plastic Beam Elements.- Virtual Cardiac Surgical Planning through Hemodynamics Simulation and Design Optimization of Fontan Grafts.- 3D Modelling of the residual freezing for renal cryoablation simulation and prediction.- A generative model of hyperelastic strain energy density functions for real-time simulation of brain tissue deformation.- Variational Mandible Shape Completion for Virtual Surgical Planning.- Markerless Image-to-Face Registration for Untethered Augmented Reality in Head and Neck Surgery.- Towards a first mixed-reality first person point of view needle navigation system.- Concept-Centric Visual Turing Tests for Method Validation.- Transferring from ex-vivo to in-vivo: Instrument Localization in 3D Cardiac Ultrasound Using Pyramid-UNet with Hybrid Loss.- A Sparsely Distributed Intra-cardial Ultrasonic Array for Real-time Endocardial Mapping.- FetusMap: Fetal Pose Estimation in 3D Ultrasound.- Agent with Warm Start and Active Termination for Plane Localization in 3D Ultrasound.- Learning and Understanding Deep Spatio-Temporal Representations from Free-Hand Fetal Ultrasound Sweeps.- User guidance for point-of-care echocardiography using multi-task deep neural network.- Integrating 3D Geometry of Organ for Improving Medical Imaging Segmentation.- Estimating Reference Bony Shape Model for Personalized Surgical Reconstruction of Posttraumatic Facial Defects.- A New Approach of Predicting Facial Changes following Orthognathic Surgery using Realistic Lip Sliding Effect.- An Automatic Approach to Reestablish Final Dental Occlusion for 1-Piece Maxillary Orthognathic Surgery.- MIC meets CAI.- A Two-stage Framework for Real-time Guidewire Endpoint Localization.- Investigating the role of VR in a simulation-based medical planning system for coronary interventions.- Learned Full-sampling Reconstruction.- A deep regression model for seed localization in prostate brachytherapy.- Model-Based Surgical Recommendations for Optimal Placement of Epiretinal Implants.- Towards Multiple Instance Learning and Hermann Weyl\'s Discrepancy for Robust Image-Guided Bronchoscopic Intervention.- Learning Where to Look While Tracking Instruments in Robot-assisted Surgery.- Efficient Soft-Constrained Clustering for Group-Based Labeling.- Leveraging Other Datasets for Medical Imaging Classification: Evaluation of Transfer, Multi-task and Semi-supervised Learning.- Incorporating Temporal Prior from Motion Flow for Instrument Segmentation in Minimally Invasive Surgery Video.- Hard Frame Detection and Online Mapping for Surgical Phase Recognition.- Automated Surgical Activity Recognition with One Labeled Sequence.- Using 3D Convolutional Neural Networks to learn spatiotemporal features for automatic surgical gesture recognition in video.- Surgical Skill Assessment on In-Vivo Clinical Data via the Clearness of Operating Field.- Graph Neural Network for Interpreting Task-fMRI Biomarkers.- Achieving Accurate Segmentation of Nasopharyngeal Carcinoma in MR Images through Recurrent Attention.- Brain Dynamics Through the Lens of Statistical Mechanics by Unifying Structure and Function.- Synthesis and Inpainting-based MR-CT Registration for Image-Guided Thermal Ablation of Liver Tumors.- CFEA: Collaborative Feature Ensembling Adaptation for Domain Adaptation in Unsupervised Optic Disc and Cup Segmentation.- Gastric cancer detection from endoscopic images using synthesis by GAN.- Deep Local-Global Refinement Network for Stent Analysis in IVOCT Images.- Generalized Non-Rigid Point Set Registration with Hybrid Mixture Models Considering Anisotropic Positional Uncertainties.- Mixed-Supervision Multilevel GAN for Image Quality Enhancement.- Combined Learning for Similar Tasks with Domain-Switching Networks.- Real-time 3D reconstruction of colonoscopic surfaces for determining missing regions.- Human Pose Estimation on Privacy-Preserving Low-Resolution Depth Images.- A Mesh-Aware Ball-Pivoting Algorithm for Generating the Virtual Arachnoid Mater.- Attenuation Imaging with Pulse-Echo Ultrasound based on an Acoustic Reflector.- SWTV-ACE: Spatially Weighted Regularization based Attenuation Coefficient Estimation Method for Hepatic Steatosis Detection.- Deep Learning-based Universal Beamformer for Ultrasound Imaging.- Towards whole placenta segmentation at late gestation using multi-view ultrasound images.- Single Shot Needle Tip Localization in 2D Ultrasound.- Discriminative Correlation Filter Network for Robust Landmark Tracking in Ultrasound Guided Intervention.- Echocardiography Segmentation by Quality Translation using Anatomically Constrained CycleGAN.- Matwo-CapsNet: a Multi-Label Semantic Segmentation Capsules Network.- LumiPath -- Towards Real-time Physically-based Rendering on Embedded Devices.- An Integrated Multi-Physics Finite Element Modeling Framework for Deep Brain Stimulation: Preliminary Study on Impact of Brain Shift on Neuronal Pathways.<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:description<\/a> \"The six-volume set LNCS 11764, 11765, 11766, 11767, 11768, and 11769 constitutes the refereed proceedings of the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019, held in Shenzhen, China, in October 2019. The 539 revised full papers presented were carefully reviewed and selected from 1730 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: optical imaging; endoscopy; microscopy. Part II: image segmentation; image registration; cardiovascular imaging; growth, development, atrophy and progression. Part III: neuroimage reconstruction and synthesis; neuroimage segmentation; diffusion weighted magnetic resonance imaging; functional neuroimaging (fMRI); miscellaneous neuroimaging. Part IV: shape; prediction; detection and localization; machine learning; computer-aided diagnosis; image reconstruction and synthesis. Part V: computer assisted interventions; MIC meets CAI. Part VI: computed tomography; X-ray imaging.<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:editor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/9621268169#Person\/zhou_xiangyun_sean<\/a>> ; # Xiangyun Sean Zhou<\/span>\n\u00A0\u00A0\u00A0\nschema:editor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/9621268169#Person\/peters_terry_m_1948_january_5<\/a>> ; # Terry M. Peters<\/span>\n\u00A0\u00A0\u00A0\nschema:editor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/9621268169#Person\/khan_ali<\/a>> ; # Ali Khan<\/span>\n\u00A0\u00A0\u00A0\nschema:editor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/9621268169#Person\/essert_caroline<\/a>> ; # Caroline Essert<\/span>\n\u00A0\u00A0\u00A0\nschema:editor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/9621268169#Person\/liu_tianming_dr<\/a>> ; # Dr. Tianming Liu<\/span>\n\u00A0\u00A0\u00A0\nschema:editor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/9621268169#Person\/yap_pew_thian<\/a>> ; # Pew-Thian Yap<\/span>\n\u00A0\u00A0\u00A0\nschema:editor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/9621268169#Person\/shen_dinggang<\/a>> ; # Dinggang Shen<\/span>\n\u00A0\u00A0\u00A0\nschema:editor<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/9621268169#Person\/staib_lawrence<\/a>> ; # Lawrence Staib<\/span>\n\u00A0\u00A0\u00A0\nschema:exampleOfWork<\/a> <http:\/\/worldcat.org\/entity\/work\/id\/9621268169<\/a>> ;\u00A0\u00A0\u00A0\nschema:genre<\/a> \"Conference publication<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:genre<\/a> \"Conference papers and proceedings<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:genre<\/a> \"Electronic books<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:inLanguage<\/a> \"en<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isPartOf<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/9621268169#Series\/lncs_sublibrary<\/a>> ; # LNCS sublibrary.<\/span>\n\u00A0\u00A0\u00A0\nschema:isPartOf<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/9621268169#Series\/lncs_sublibrary_sl_6_image_processing_computer_vision_pattern_recognition_and_graphics<\/a>> ; # LNCS sublibrary. SL 6, Image processing, computer vision, pattern recognition, and graphics<\/span>\n\u00A0\u00A0\u00A0\nschema:isPartOf<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/9621268169#Series\/lecture_notes_in_computer_science<\/a>> ; # Lecture notes in computer science ;<\/span>\n\u00A0\u00A0\u00A0\nschema:name<\/a> \"Medical image computing and computer assisted intervention -- MICCAI 2019 : 22nd International Conference, Shenzhen, China, October 13-17, 2019, Proceedings. Part V<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\nschema:productID<\/a> \"1123174826<\/span>\" ;\u00A0\u00A0\u00A0\nschema:url<\/a> <https:\/\/ezproxy.lau.edu.lb:2443\/login?url=https:\/\/doi.org\/10.1007\/978-3-030-32254-0<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <https:\/\/doi.org\/10.1007\/978-3-030-32254-0<\/a>> ;\u00A0\u00A0\u00A0\nschema:url<\/a> <http:\/\/public.eblib.com\/choice\/PublicFullRecord.aspx?p=5968225<\/a>> ;\u00A0\u00A0\u00A0\nschema:workExample<\/a> <http:\/\/worldcat.org\/isbn\/9783030322540<\/a>> ;\u00A0\u00A0\u00A0\nschema:workExample<\/a> <http:\/\/dx.doi.org\/10.1007\/978-3-030-32254-0<\/a>> ;\u00A0\u00A0\u00A0\numbel:isLike<\/a> <http:\/\/bnb.data.bl.uk\/id\/resource\/GBB9H3097<\/a>> ;\u00A0\u00A0\u00A0\nwdrs:describedby<\/a> <http:\/\/www.worldcat.org\/title\/-\/oclc\/1123174826<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Related Entities<\/h3>\n
<http:\/\/dewey.info\/class\/616.0757\/e23\/<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/dx.doi.org\/10.1007\/978-3-030-32254-0<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:IndividualProduct<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/9621268169#Meeting\/international_conference_on_medical_image_computing_and_computer_assisted_intervention_22nd_2019_shenzhen_shi_china<\/a>> # International Conference on Medical Image Computing and Computer-Assisted Intervention (22nd : 2019 : Shenzhen Shi, China)<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:Meeting<\/a>, schema:Event<\/a> ;\u00A0\u00A0\u00A0\nschema:location<\/a> <http:\/\/experiment.worldcat.org\/entity\/work\/data\/9621268169#Place\/shenzhen_shi_china<\/a>> ; # Shenzhen Shi, China)<\/span>\n\u00A0\u00A0\u00A0\nschema:name<\/a> \"International Conference on Medical Image Computing and Computer-Assisted Intervention (22nd : 2019 : Shenzhen Shi, China)<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/9621268169#Person\/essert_caroline<\/a>> # Caroline Essert<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Essert<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Caroline<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Caroline Essert<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/9621268169#Person\/khan_ali<\/a>> # Ali Khan<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Khan<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Ali<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Ali Khan<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/9621268169#Person\/liu_tianming_dr<\/a>> # Dr. Tianming Liu<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Liu<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Tianming<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Dr. Tianming Liu<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/9621268169#Person\/peters_terry_m_1948_january_5<\/a>> # Terry M. Peters<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:birthDate<\/a> \"1948 January 5<\/span>\" ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Peters<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Terry M.<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Terry M. Peters<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/9621268169#Person\/shen_dinggang<\/a>> # Dinggang Shen<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Shen<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Dinggang<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Dinggang Shen<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/9621268169#Person\/staib_lawrence<\/a>> # Lawrence Staib<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Staib<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Lawrence<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Lawrence Staib<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/9621268169#Person\/yap_pew_thian<\/a>> # Pew-Thian Yap<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Yap<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Pew-Thian<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Pew-Thian Yap<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/9621268169#Person\/zhou_xiangyun_sean<\/a>> # Xiangyun Sean Zhou<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Person<\/a> ;\u00A0\u00A0\u00A0\nschema:familyName<\/a> \"Zhou<\/span>\" ;\u00A0\u00A0\u00A0\nschema:givenName<\/a> \"Xiangyun Sean<\/span>\" ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Xiangyun Sean Zhou<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/9621268169#Place\/shenzhen_shi_china<\/a>> # Shenzhen Shi, China)<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Shenzhen Shi, China)<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/9621268169#Series\/lecture_notes_in_computer_science<\/a>> # Lecture notes in computer science ;<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:PublicationSeries<\/a> ;\u00A0\u00A0\u00A0\nschema:hasPart<\/a> <http:\/\/www.worldcat.org\/oclc\/1123174826<\/a>> ; # Medical image computing and computer assisted intervention -- MICCAI 2019 : 22nd International Conference, Shenzhen, China, October 13-17, 2019, Proceedings. Part V<\/span>\n\u00A0\u00A0\u00A0\nschema:name<\/a> \"Lecture notes in computer science ;<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/9621268169#Series\/lncs_sublibrary<\/a>> # LNCS sublibrary.<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:PublicationSeries<\/a> ;\u00A0\u00A0\u00A0\nschema:hasPart<\/a> <http:\/\/www.worldcat.org\/oclc\/1123174826<\/a>> ; # Medical image computing and computer assisted intervention -- MICCAI 2019 : 22nd International Conference, Shenzhen, China, October 13-17, 2019, Proceedings. Part V<\/span>\n\u00A0\u00A0\u00A0\nschema:name<\/a> \"LNCS sublibrary.<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/9621268169#Series\/lncs_sublibrary_sl_6_image_processing_computer_vision_pattern_recognition_and_graphics<\/a>> # LNCS sublibrary. SL 6, Image processing, computer vision, pattern recognition, and graphics<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nbgn:PublicationSeries<\/a> ;\u00A0\u00A0\u00A0\nschema:hasPart<\/a> <http:\/\/www.worldcat.org\/oclc\/1123174826<\/a>> ; # Medical image computing and computer assisted intervention -- MICCAI 2019 : 22nd International Conference, Shenzhen, China, October 13-17, 2019, Proceedings. Part V<\/span>\n\u00A0\u00A0\u00A0\nschema:name<\/a> \"LNCS sublibrary. SL 6, Image processing, computer vision, pattern recognition, and graphics<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/9621268169#Topic\/computer_assisted_surgery<\/a>> # Computer-assisted surgery<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Computer-assisted surgery<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/experiment.worldcat.org\/entity\/work\/data\/9621268169#Topic\/diagnostic_imaging_data_processing<\/a>> # Diagnostic imaging--Data processing<\/span>\n\u00A0\u00A0\u00A0\u00A0a \nschema:Intangible<\/a> ;\u00A0\u00A0\u00A0\nschema:name<\/a> \"Diagnostic imaging--Data processing<\/span>\"@en<\/a> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/id.loc.gov\/vocabulary\/countries\/sz<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:Place<\/a> ;\u00A0\u00A0\u00A0\ndcterms:identifier<\/a> \"sz<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/public.eblib.com\/choice\/PublicFullRecord.aspx?p=5968225<\/a>>\u00A0\u00A0\u00A0\nrdfs:comment<\/a> \"Click here to view book<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/worldcat.org\/isbn\/9783030322540<\/a>>\u00A0\u00A0\u00A0\u00A0a \nschema:ProductModel<\/a> ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"3030322548<\/span>\" ;\u00A0\u00A0\u00A0\nschema:isbn<\/a> \"9783030322540<\/span>\" ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n
<http:\/\/www.worldcat.org\/title\/-\/oclc\/1123174826<\/a>>\u00A0\u00A0\u00A0\u00A0a \ngenont:InformationResource<\/a>, genont:ContentTypeGenericResource<\/a> ;\u00A0\u00A0\u00A0\nschema:about<\/a> <http:\/\/www.worldcat.org\/oclc\/1123174826<\/a>> ; # Medical image computing and computer assisted intervention -- MICCAI 2019 : 22nd International Conference, Shenzhen, China, October 13-17, 2019, Proceedings. Part V<\/span>\n\u00A0\u00A0\u00A0\nschema:dateModified<\/a> \"2020-01-20<\/span>\" ;\u00A0\u00A0\u00A0\nvoid:inDataset<\/a> <http:\/\/purl.oclc.org\/dataset\/WorldCat<\/a>> ;\u00A0\u00A0\u00A0\u00A0.\n\n\n<\/div>\n\n

Content-negotiable representations<\/p>\n