Find a copy online
Links to this item
theses.fr Accès au texte intégral
Find a copy in the library
Finding libraries that hold this item...
Details
Genre/Form: | Thèses et écrits académiques |
---|---|
Material Type: | Document, Thesis/dissertation, Internet resource |
Document Type: | Internet Resource, Computer File |
All Authors / Contributors: |
Andrei Gherca; Mohamed Hajjam; Patrick Maspeyrot; Aurelian Fatu; Dominique Bonneau; Traian Cicone; Mohammed Jaï; John Tichy; Abdelghani Maoui; Université de Poitiers.; École doctorale Sciences et Ingénierie des Matériaux, Mécanique, Energétique et Aéronautique (Poitiers / 2009-2018).; Pôle poitevin de recherche pour l'ingénieur en mécanique, matériaux et énergétique - PPRIMME (Poitiers).; Université de Poitiers. UFR des sciences fondamentales et appliquées. |
OCLC Number: | 870262981 |
Notes: | Titre provenant de l'écran-titre. |
Description: | 1 online resource |
Responsibility: | Andrei Gherca ; sous la direction de Mohamed Hajjam et de Patrick Maspeyrot et de Aurelian Fatu. |
Abstract:
Understanding and modeling a lubricated contact in the presence of surface textures requires a refined physical description in order to comprehend and explain the contradicting results that are currently presented in international literature. An increasing number of theoretical and experimental studies have shown that surface texturing could improve the tribological properties of lubricated or even dry contacts. The load-carrying capacity, the friction coefficient or the wear resistance are the main characteristics that can be improved through texturing. Nevertheless, the lubrication mechanisms that might explain these effects are still the subject of debate within the scientific community. These various contradictions have lead to a significant development of this particular field of research. In this scientific context, the main objective of this thesis is to lead, by means of a thorough numerical and theoretical analysis, towards a better understanding of the physical effects induced by surface texturing in lubricated contacts. The geometrical parameters, which are essential with regard to the generated effects, are submitted to a detailed investigation that also takes into account the influence of the operating conditions (surface speed, viscosity, ambient pressure etc.). The theoretical conclusions obtained throughout this investigation should lead to an improvement in texture design and should allow an optimization of most devices operating in lubricated conditions. Among these various applications, the hydrodynamic thrust bearing has been chosen in order to illustrate the relevance of our findings.
Reviews

